|
--- |
|
license: apache-2.0 |
|
base_model: |
|
- Trelis/Llama-3.2-1B-Instruct-MATH-3ep |
|
- huihui-ai/Llama-3.2-1B-Instruct-abliterated |
|
- passing2961/Ultron-Summarizer-1B |
|
- unsloth/Llama-3.2-1B-Instruct |
|
tags: |
|
- moe |
|
- frankenmoe |
|
- merge |
|
- mergekit |
|
- lazymergekit |
|
- Trelis/Llama-3.2-1B-Instruct-MATH-3ep |
|
- huihui-ai/Llama-3.2-1B-Instruct-abliterated |
|
- passing2961/Ultron-Summarizer-1B |
|
- unsloth/Llama-3.2-1B-Instruct |
|
--- |
|
|
|
# DaRuukLLM-Refresh-4x1B-v1 |
|
|
|
DaRuukLLM-Refresh-4x1B-v1 is a Mixure of Experts (MoE) made with the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): |
|
* [Trelis/Llama-3.2-1B-Instruct-MATH-3ep](https://huggingface.co/Trelis/Llama-3.2-1B-Instruct-MATH-3ep) |
|
* [huihui-ai/Llama-3.2-1B-Instruct-abliterated](https://huggingface.co/huihui-ai/Llama-3.2-1B-Instruct-abliterated) |
|
* [passing2961/Ultron-Summarizer-1B](https://huggingface.co/passing2961/Ultron-Summarizer-1B) |
|
* [unsloth/Llama-3.2-1B-Instruct](https://huggingface.co/unsloth/Llama-3.2-1B-Instruct) |
|
|
|
## 🧩 Configuration |
|
|
|
```yaml |
|
base_model: unsloth/Llama-3.2-1B-Instruct # Base model for self-attention and layer normalization |
|
gate_mode: hidden # Use hidden state representations for MoE gate parameters |
|
dtype: bfloat16 # Output data type for the merged model |
|
|
|
experts: |
|
- source_model: Trelis/Llama-3.2-1B-Instruct-MATH-3ep # Expert for math-related tasks |
|
positive_prompts: |
|
- "Solve the following math problem:" |
|
- "Calculate the value of:" |
|
- "What is the result of:" |
|
|
|
- source_model: huihui-ai/Llama-3.2-1B-Instruct-abliterated # Expert for uncensored queries |
|
positive_prompts: |
|
- "Explain the following controversial topic:" |
|
- "Discuss the implications of:" |
|
- "Provide an uncensored analysis of:" |
|
|
|
- source_model: passing2961/Ultron-Summarizer-1B # Expert for summarization tasks |
|
positive_prompts: |
|
- "Summarize the following text:" |
|
- "Provide a concise summary of:" |
|
- "Generate a brief overview of:" |
|
|
|
- source_model: unsloth/Llama-3.2-1B-Instruct # Base model also acts as the chat expert |
|
positive_prompts: |
|
- "How can I assist you today?" |
|
- "What would you like to discuss?" |
|
- "Let's have a conversation about:" |
|
``` |
|
|
|
## 💻 Usage |
|
|
|
```python |
|
!pip install -qU transformers bitsandbytes accelerate |
|
|
|
from transformers import AutoTokenizer |
|
import transformers |
|
import torch |
|
|
|
model = "Xiaojian9992024/DaRuukLLM-Refresh-4x1B-v1" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model) |
|
pipeline = transformers.pipeline( |
|
"text-generation", |
|
model=model, |
|
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True}, |
|
) |
|
|
|
messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}] |
|
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) |
|
print(outputs[0]["generated_text"]) |
|
``` |