|
--- |
|
library_name: transformers.js |
|
license: gpl-3.0 |
|
pipeline_tag: object-detection |
|
--- |
|
|
|
https://github.com/WongKinYiu/yolov9 with ONNX weights to be compatible with Transformers.js. |
|
|
|
|
|
## Usage (Transformers.js) |
|
|
|
If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@xenova/transformers) using: |
|
```bash |
|
npm i @xenova/transformers |
|
``` |
|
|
|
**Example:** Perform object-detection with `Xenova/gelan-c`. |
|
|
|
```js |
|
import { AutoModel, AutoProcessor, RawImage } from '@xenova/transformers'; |
|
|
|
// Load model |
|
const model = await AutoModel.from_pretrained('Xenova/gelan-c', { |
|
// quantized: false, // (Optional) Use unquantized version. |
|
}) |
|
|
|
// Load processor |
|
const processor = await AutoProcessor.from_pretrained('Xenova/gelan-c'); |
|
// processor.feature_extractor.do_resize = false; // (Optional) Disable resizing |
|
// processor.feature_extractor.size = { width: 128, height: 128 } // (Optional) Update resize value |
|
|
|
// Read image and run processor |
|
const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/city-streets.jpg'; |
|
const image = await RawImage.read(url); |
|
const { pixel_values } = await processor(image); |
|
|
|
// Run object detection |
|
const { outputs } = await model({ images: pixel_values }) |
|
const predictions = outputs.tolist(); |
|
|
|
for (const [xmin, ymin, xmax, ymax, score, id] of predictions) { |
|
const bbox = [xmin, ymin, xmax, ymax].map(x => x.toFixed(2)).join(', ') |
|
console.log(`Found "${model.config.id2label[id]}" at [${bbox}] with score ${score.toFixed(2)}.`) |
|
} |
|
// Found "car" at [446.82, 377.56, 639.19, 477.84] with score 0.93. |
|
// Found "car" at [177.22, 336.87, 399.68, 417.72] with score 0.93. |
|
// Found "bicycle" at [1.01, 518.22, 110.25, 584.43] with score 0.91. |
|
// Found "bicycle" at [352.25, 526.08, 463.18, 588.02] with score 0.90. |
|
// Found "person" at [474.38, 430.36, 533.80, 534.33] with score 0.86. |
|
// Found "bicycle" at [449.59, 476.04, 555.38, 537.74] with score 0.86. |
|
// Found "person" at [34.38, 469.56, 79.05, 566.80] with score 0.83. |
|
// Found "traffic light" at [376.79, 66.41, 401.90, 111.34] with score 0.82. |
|
// ... |
|
``` |
|
|
|
## Demo |
|
|
|
Test it out [here](https://huggingface.co/spaces/Xenova/yolov9-web)! |
|
|
|
--- |
|
|
|
|
|
Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`). |