Text Generation
Transformers
Safetensors
mixtral
Mixture of Experts
mergekit
Merge
chinese
arabic
english
multilingual
german
french
gagan3012/MetaModel
jeonsworld/CarbonVillain-en-10.7B-v2
jeonsworld/CarbonVillain-en-10.7B-v4
TomGrc/FusionNet_linear
DopeorNope/SOLARC-M-10.7B
VAGOsolutions/SauerkrautLM-SOLAR-Instruct
upstage/SOLAR-10.7B-Instruct-v1.0
fblgit/UNA-SOLAR-10.7B-Instruct-v1.0
conversational
text-generation-inference
Inference Endpoints
MetaModel_moex8
This model is a Mixure of Experts (MoE) made with mergekit (mixtral branch). It uses the following base models:
- gagan3012/MetaModel
- jeonsworld/CarbonVillain-en-10.7B-v2
- jeonsworld/CarbonVillain-en-10.7B-v4
- TomGrc/FusionNet_linear
- DopeorNope/SOLARC-M-10.7B
- VAGOsolutions/SauerkrautLM-SOLAR-Instruct
- upstage/SOLAR-10.7B-Instruct-v1.0
- fblgit/UNA-SOLAR-10.7B-Instruct-v1.0
𧩠Configuration
dtype: bfloat16
experts:
- positive_prompts:
- ''
source_model: gagan3012/MetaModel
- positive_prompts:
- ''
source_model: jeonsworld/CarbonVillain-en-10.7B-v2
- positive_prompts:
- ''
source_model: jeonsworld/CarbonVillain-en-10.7B-v4
- positive_prompts:
- ''
source_model: TomGrc/FusionNet_linear
- positive_prompts:
- ''
source_model: DopeorNope/SOLARC-M-10.7B
- positive_prompts:
- ''
source_model: VAGOsolutions/SauerkrautLM-SOLAR-Instruct
- positive_prompts:
- ''
source_model: upstage/SOLAR-10.7B-Instruct-v1.0
- positive_prompts:
- ''
source_model: fblgit/UNA-SOLAR-10.7B-Instruct-v1.0
gate_mode: hidden
π» Usage
!pip install -qU transformers bitsandbytes accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "gagan3012/MetaModel_moex8"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)
messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
- Downloads last month
- 1,044
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.