ACL-2025 / main_.py
Wendy
Upload main_.py with huggingface_hub
c035dcc verified
raw
history blame
13.7 kB
import os
import numpy as np
import torch
import os
import re
import json
import argparse
import random
from transformers import AutoTokenizer, DataCollatorForSeq2Seq, Seq2SeqTrainingArguments, Seq2SeqTrainer
from model import T5ForMultimodalGeneration
from utils_data_ import AITWDatasetImg, load_data
from rich.table import Column, Table
from rich import box
from rich.console import Console
console = Console(record=True)
import action_matching, action_type
import evaluate
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--data_root', type=str, default='dataset/blip/general_blip')
parser.add_argument('--output_dir', type=str, default='experiments')
parser.add_argument('--model', type=str, default='declare-lab/flan-alpaca-base')
parser.add_argument('--data_ratio', type=float, default=None)
parser.add_argument('--eval_name', type=str, default=None, help='the saved subset name used for evaluation')
parser.add_argument('--local_rank', type=int, default=-1)
parser.add_argument('--epoch', type=int, default=2)
parser.add_argument('--lr', type=float, default=5e-5)
parser.add_argument('--warmup_ratio', type=float, default=0.1)
parser.add_argument('--bs', type=int, default=1)
parser.add_argument('--debug_num', type=int, default=None)
parser.add_argument('--input_len', type=int, default=512)
parser.add_argument('--output_len', type=int, default=256)
parser.add_argument('--img_dim', type=int, default=1408)
parser.add_argument('--eval_bs', type=int, default=16)
parser.add_argument('--eval_acc', type=int, default=None, help='evaluate accumulation step')
parser.add_argument('--all_data', type=float, default=None, help='whether using all the data for training. Set the ratio for google apps to save computation')
parser.add_argument('--eval_subset', type=str, default=None, help='use which subset for evaluation/test when training with all data')
parser.add_argument('--use_history', type=int, default=8, help='use textual action history')
parser.add_argument('--use_img_history', action='store_true', help='use screen history')
parser.add_argument('--use_future', type=int, default=16, help='planning the future actions before giving the current action')
parser.add_argument('--use_layout', action='store_true', help='use annotated layout information')
parser.add_argument('--transform_axis', default=True, action='store_true', help='use coordinate normalization')
parser.add_argument('--use_generate', default=True, action='store_true', help='only for baseline to improve inference speed')
parser.add_argument('--final_eval', action='store_true', help='only evaluate the model at the final epoch')
parser.add_argument('--user_msg', type=str, default="debug", help='experiment type in the save_dir')
parser.add_argument('--img_type', type=str, default="blip", help='type of image features')
parser.add_argument('--evaluate_dir', type=str, default=None, help='the directory of model for evaluation')
parser.add_argument('--seed', type=int, default=42, help='random seed')
args = parser.parse_args()
return args
if __name__ == '__main__':
# training logger to log training progress
training_logger = Table(
Column("Epoch", justify="center"),
Column("Steps", justify="center"),
Column("Loss", justify="center"),
title="Training Status",
pad_edge=False,
box=box.ASCII,
)
args = parse_args()
print("args",args)
print('====Input Arguments====')
print(json.dumps(vars(args), indent=2, sort_keys=False))
random.seed(args.seed)
torch.manual_seed(args.seed) # pytorch random seed
np.random.seed(args.seed) # numpy random seed
torch.backends.cudnn.deterministic = True
if not os.path.exists(args.output_dir):
os.mkdir(args.output_dir)
if args.evaluate_dir is not None:
args.model = args.evaluate_dir
tokenizer = AutoTokenizer.from_pretrained(args.model)
console.log(f"""[Model]: Loading {args.model}...\n""")
console.log(f"[Data]: Reading data...\n")
if args.evaluate_dir is not None:
save_dir = args.evaluate_dir
else:
model_name = args.model.replace("/","-")
gpu_count = torch.cuda.device_count()
save_dir = f"{args.output_dir}/{args.user_msg}_{model_name}_{args.img_type}_lr{args.lr}_bs{args.bs * gpu_count}_ip{args.input_len}_op{args.output_len}_ep{args.epoch}"
if not os.path.exists(save_dir):
os.mkdir(save_dir)
print(save_dir)
model = T5ForMultimodalGeneration.from_pretrained(args.model, args.img_dim)
if args.evaluate_dir is not None:
train_set = None
else:
training_data = load_data(args, "train")
train_set = AITWDatasetImg(
training_data,
tokenizer,
args.input_len,
args.output_len
)
eval_data = load_data(args, "val")
print('------------------------------------')
print(type(eval_data))
print(type(eval_data[0]))
print(len(eval_data[0]))
print(len(eval_data))
block = 2000
# for i in range(len(eval_data)):
# eval_data[i] = eval_data[i][:block]
eval_set = AITWDatasetImg(
eval_data,
tokenizer,
args.input_len,
args.output_len
)
test_data = load_data(args, "test")
# for i in range(len(test_data)):
# test_data[i] = test_data[i][:block]
test_set = AITWDatasetImg(
test_data,
tokenizer,
args.input_len,
args.output_len
)
datacollator = DataCollatorForSeq2Seq(tokenizer)
print("model parameters: ", model.num_parameters())
# rougel for rationale generation
metric = evaluate.load("rouge")
def compute_metrics_rouge(eval_preds):
preds, targets = eval_preds
if isinstance(preds, tuple):
preds = preds[0]
preds= np.where(preds != -100, preds, tokenizer.pad_token_id)
preds = tokenizer.batch_decode(preds, skip_special_tokens=True, clean_up_tokenization_spaces=True)
targets = tokenizer.batch_decode(targets, skip_special_tokens=True, clean_up_tokenization_spaces=True)
result = metric.compute(predictions=preds, references=targets)
result = {k: round(v * 100, 4) for k, v in result.items()}
prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds]
result["gen_len"] = np.mean(prediction_lens)
return result
# only use the last model for evaluation to save time
if args.final_eval:
training_args = Seq2SeqTrainingArguments(
save_dir,
do_train=True if args.evaluate_dir is None else False,
do_eval=False,
warmup_ratio=args.warmup_ratio,
evaluation_strategy="no",
logging_strategy="steps",
save_strategy="epoch",
save_total_limit = 2,
learning_rate= args.lr,
eval_accumulation_steps=args.eval_acc,
per_device_train_batch_size=args.bs,
per_device_eval_batch_size=args.eval_bs,
weight_decay=0.01,
num_train_epochs=args.epoch,
predict_with_generate=args.use_generate,
generation_max_length=args.output_len,
report_to="none",
local_rank=args.local_rank
)
# evaluate at each epoch
else:
training_args = Seq2SeqTrainingArguments(
save_dir,
do_train=True if args.evaluate_dir is None else False,
do_eval=True,
warmup_ratio=args.warmup_ratio,
evaluation_strategy="epoch",
logging_strategy="steps",
save_strategy="epoch",
save_total_limit = 2,
learning_rate= args.lr,
eval_accumulation_steps=args.eval_acc,
per_device_train_batch_size=args.bs,
per_device_eval_batch_size=args.eval_bs,
weight_decay=0.01,
num_train_epochs=args.epoch,
metric_for_best_model="rougeL",
predict_with_generate=args.use_generate,
generation_max_length=args.output_len,
load_best_model_at_end=True,
report_to="none",
local_rank=args.local_rank
)
trainer = Seq2SeqTrainer(
model=model,
args=training_args,
train_dataset=train_set,
eval_dataset=eval_set,
data_collator=datacollator,
tokenizer=tokenizer,
compute_metrics = compute_metrics_rouge
)
if args.evaluate_dir is None:
trainer.train()
trainer.save_model(save_dir)
# metrics = trainer.evaluate(eval_dataset = test_set, max_length=args.output_len)
# trainer.log_metrics("test", metrics)
# trainer.save_metrics("test", metrics)
metrics = {}
predict_results = trainer.predict(test_dataset=test_set, max_length=args.output_len)
if trainer.is_world_process_zero():
preds, targets = predict_results.predictions, predict_results.label_ids
preds= np.where(preds != -100, preds, tokenizer.pad_token_id)
preds = tokenizer.batch_decode(preds, skip_special_tokens=True, clean_up_tokenization_spaces=True)
targets = tokenizer.batch_decode(targets, skip_special_tokens=True, clean_up_tokenization_spaces=True)
action_correct = 0
text_correct = 0
type_correct = 0
reference_test_positions = test_set.anno_positions
output_data = []
pattern = r'(?<=Action Decision:\s).*'
assert len(preds) == len(targets) == len(reference_test_positions)
for idx, pred in enumerate(preds):
try:
result = re.search(pattern, targets[idx])
target_text = result.group(0)
target_text = target_text.strip()
reference = eval("{" + target_text + "}")
except:
print("reference error")
continue
try:
result = re.search(pattern, preds[idx])
pred_text = result.group(0)
pred_text = pred_text.strip()
pred = eval("{" + pred_text + "}")
action_1_touch_yx = eval(pred["touch_point"])
action_1_lift_yx = eval(pred["lift_point"])
action_1_action_type = action_type.ActionType[pred["action_type"]].value
action_1_typed_text = pred["typed_text"].lower()
action_1_typed_text = action_1_typed_text.strip()
action_1_wrap = f'"action_type": "{action_1_action_type}", "touch_point": "{action_1_touch_yx}", "lift_point": "{action_1_lift_yx}", "typed_text": "{action_1_typed_text}"'
action_1_wrap = action_1_wrap.replace('"', "'")
except:
pred = '{ "action_type": "TYPE", "touch_point": "[-1.0, -1.0]", "lift_point": "[-1.0, -1.0]", "typed_text": "Invalid"}'
action_2_touch_yx = eval(reference["touch_point"])
action_2_lift_yx = eval(reference["lift_point"])
action_2_action_type = action_type.ActionType[reference["action_type"]].value
action_2_typed_text = reference["typed_text"].lower()
action_2_wrap = f'"action_type": "{action_2_action_type}", "touch_point": "{action_2_touch_yx}", "lift_point": "{action_2_lift_yx}", "typed_text": "{action_2_typed_text}"'
action_2_wrap = action_2_wrap.replace('"', "'")
annotation_positions = reference_test_positions[idx]
try:
check_match = action_matching.check_actions_match(
action_1_touch_yx,
action_1_lift_yx,
action_1_action_type,
action_2_touch_yx,
action_2_lift_yx,
action_2_action_type,
annotation_positions
)
except Exception as exc:
print(idx, action_1_touch_yx, action_1_lift_yx)
check_match = False
match_label = "invalid"
if check_match:
action_correct += 1
match_label = 1
else:
match_label = 0
if check_match and (action_1_typed_text in action_2_typed_text or action_2_typed_text in action_1_typed_text):
text_correct += 1
if action_1_action_type == action_2_action_type:
type_correct += 1
action_data = {"pred": action_1_wrap, "target": action_2_wrap, "match_label": match_label}
output_data.append(action_data)
metrics["accuracy"] = "{:.2f}".format(action_correct/len(targets) * 100)
metrics["text_acc"] = "{:.2f}".format(text_correct/len(targets) * 100)
metrics["type_acc"] = "{:.2f}".format(type_correct/len(targets) * 100)
metrics["action_correct"] = action_correct
metrics["text_correct"] = text_correct
metrics["type_correct"] = type_correct
metrics["total_num"] = len(targets)
print(metrics)
output_data = {
"metrics": metrics,
"data": output_data
}
print(save_dir)
if args.eval_name:
output_prediction_file = os.path.join(save_dir,f"predictions_ans_test_{args.eval_name}.json")
else:
output_prediction_file = os.path.join(save_dir,"predictions_ans_test.json")
with open(output_prediction_file, "w") as writer:
writer.write(json.dumps(output_data, indent=4))