File size: 13,730 Bytes
02cb6ef c035dcc 02cb6ef 418ea34 60505db 418ea34 a2a3057 418ea34 a2a3057 c035dcc 02cb6ef c035dcc 02cb6ef a2a3057 02cb6ef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 |
import os
import numpy as np
import torch
import os
import re
import json
import argparse
import random
from transformers import AutoTokenizer, DataCollatorForSeq2Seq, Seq2SeqTrainingArguments, Seq2SeqTrainer
from model import T5ForMultimodalGeneration
from utils_data_ import AITWDatasetImg, load_data
from rich.table import Column, Table
from rich import box
from rich.console import Console
console = Console(record=True)
import action_matching, action_type
import evaluate
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--data_root', type=str, default='dataset/blip/general_blip')
parser.add_argument('--output_dir', type=str, default='experiments')
parser.add_argument('--model', type=str, default='declare-lab/flan-alpaca-base')
parser.add_argument('--data_ratio', type=float, default=None)
parser.add_argument('--eval_name', type=str, default=None, help='the saved subset name used for evaluation')
parser.add_argument('--local_rank', type=int, default=-1)
parser.add_argument('--epoch', type=int, default=2)
parser.add_argument('--lr', type=float, default=5e-5)
parser.add_argument('--warmup_ratio', type=float, default=0.1)
parser.add_argument('--bs', type=int, default=1)
parser.add_argument('--debug_num', type=int, default=None)
parser.add_argument('--input_len', type=int, default=512)
parser.add_argument('--output_len', type=int, default=256)
parser.add_argument('--img_dim', type=int, default=1408)
parser.add_argument('--eval_bs', type=int, default=16)
parser.add_argument('--eval_acc', type=int, default=None, help='evaluate accumulation step')
parser.add_argument('--all_data', type=float, default=None, help='whether using all the data for training. Set the ratio for google apps to save computation')
parser.add_argument('--eval_subset', type=str, default=None, help='use which subset for evaluation/test when training with all data')
parser.add_argument('--use_history', type=int, default=8, help='use textual action history')
parser.add_argument('--use_img_history', action='store_true', help='use screen history')
parser.add_argument('--use_future', type=int, default=16, help='planning the future actions before giving the current action')
parser.add_argument('--use_layout', action='store_true', help='use annotated layout information')
parser.add_argument('--transform_axis', default=True, action='store_true', help='use coordinate normalization')
parser.add_argument('--use_generate', default=True, action='store_true', help='only for baseline to improve inference speed')
parser.add_argument('--final_eval', action='store_true', help='only evaluate the model at the final epoch')
parser.add_argument('--user_msg', type=str, default="debug", help='experiment type in the save_dir')
parser.add_argument('--img_type', type=str, default="blip", help='type of image features')
parser.add_argument('--evaluate_dir', type=str, default=None, help='the directory of model for evaluation')
parser.add_argument('--seed', type=int, default=42, help='random seed')
args = parser.parse_args()
return args
if __name__ == '__main__':
# training logger to log training progress
training_logger = Table(
Column("Epoch", justify="center"),
Column("Steps", justify="center"),
Column("Loss", justify="center"),
title="Training Status",
pad_edge=False,
box=box.ASCII,
)
args = parse_args()
print("args",args)
print('====Input Arguments====')
print(json.dumps(vars(args), indent=2, sort_keys=False))
random.seed(args.seed)
torch.manual_seed(args.seed) # pytorch random seed
np.random.seed(args.seed) # numpy random seed
torch.backends.cudnn.deterministic = True
if not os.path.exists(args.output_dir):
os.mkdir(args.output_dir)
if args.evaluate_dir is not None:
args.model = args.evaluate_dir
tokenizer = AutoTokenizer.from_pretrained(args.model)
console.log(f"""[Model]: Loading {args.model}...\n""")
console.log(f"[Data]: Reading data...\n")
if args.evaluate_dir is not None:
save_dir = args.evaluate_dir
else:
model_name = args.model.replace("/","-")
gpu_count = torch.cuda.device_count()
save_dir = f"{args.output_dir}/{args.user_msg}_{model_name}_{args.img_type}_lr{args.lr}_bs{args.bs * gpu_count}_ip{args.input_len}_op{args.output_len}_ep{args.epoch}"
if not os.path.exists(save_dir):
os.mkdir(save_dir)
print(save_dir)
model = T5ForMultimodalGeneration.from_pretrained(args.model, args.img_dim)
if args.evaluate_dir is not None:
train_set = None
else:
training_data = load_data(args, "train")
train_set = AITWDatasetImg(
training_data,
tokenizer,
args.input_len,
args.output_len
)
eval_data = load_data(args, "val")
print('------------------------------------')
print(type(eval_data))
print(type(eval_data[0]))
print(len(eval_data[0]))
print(len(eval_data))
block = 2000
# for i in range(len(eval_data)):
# eval_data[i] = eval_data[i][:block]
eval_set = AITWDatasetImg(
eval_data,
tokenizer,
args.input_len,
args.output_len
)
test_data = load_data(args, "test")
# for i in range(len(test_data)):
# test_data[i] = test_data[i][:block]
test_set = AITWDatasetImg(
test_data,
tokenizer,
args.input_len,
args.output_len
)
datacollator = DataCollatorForSeq2Seq(tokenizer)
print("model parameters: ", model.num_parameters())
# rougel for rationale generation
metric = evaluate.load("rouge")
def compute_metrics_rouge(eval_preds):
preds, targets = eval_preds
if isinstance(preds, tuple):
preds = preds[0]
preds= np.where(preds != -100, preds, tokenizer.pad_token_id)
preds = tokenizer.batch_decode(preds, skip_special_tokens=True, clean_up_tokenization_spaces=True)
targets = tokenizer.batch_decode(targets, skip_special_tokens=True, clean_up_tokenization_spaces=True)
result = metric.compute(predictions=preds, references=targets)
result = {k: round(v * 100, 4) for k, v in result.items()}
prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds]
result["gen_len"] = np.mean(prediction_lens)
return result
# only use the last model for evaluation to save time
if args.final_eval:
training_args = Seq2SeqTrainingArguments(
save_dir,
do_train=True if args.evaluate_dir is None else False,
do_eval=False,
warmup_ratio=args.warmup_ratio,
evaluation_strategy="no",
logging_strategy="steps",
save_strategy="epoch",
save_total_limit = 2,
learning_rate= args.lr,
eval_accumulation_steps=args.eval_acc,
per_device_train_batch_size=args.bs,
per_device_eval_batch_size=args.eval_bs,
weight_decay=0.01,
num_train_epochs=args.epoch,
predict_with_generate=args.use_generate,
generation_max_length=args.output_len,
report_to="none",
local_rank=args.local_rank
)
# evaluate at each epoch
else:
training_args = Seq2SeqTrainingArguments(
save_dir,
do_train=True if args.evaluate_dir is None else False,
do_eval=True,
warmup_ratio=args.warmup_ratio,
evaluation_strategy="epoch",
logging_strategy="steps",
save_strategy="epoch",
save_total_limit = 2,
learning_rate= args.lr,
eval_accumulation_steps=args.eval_acc,
per_device_train_batch_size=args.bs,
per_device_eval_batch_size=args.eval_bs,
weight_decay=0.01,
num_train_epochs=args.epoch,
metric_for_best_model="rougeL",
predict_with_generate=args.use_generate,
generation_max_length=args.output_len,
load_best_model_at_end=True,
report_to="none",
local_rank=args.local_rank
)
trainer = Seq2SeqTrainer(
model=model,
args=training_args,
train_dataset=train_set,
eval_dataset=eval_set,
data_collator=datacollator,
tokenizer=tokenizer,
compute_metrics = compute_metrics_rouge
)
if args.evaluate_dir is None:
trainer.train()
trainer.save_model(save_dir)
# metrics = trainer.evaluate(eval_dataset = test_set, max_length=args.output_len)
# trainer.log_metrics("test", metrics)
# trainer.save_metrics("test", metrics)
metrics = {}
predict_results = trainer.predict(test_dataset=test_set, max_length=args.output_len)
if trainer.is_world_process_zero():
preds, targets = predict_results.predictions, predict_results.label_ids
preds= np.where(preds != -100, preds, tokenizer.pad_token_id)
preds = tokenizer.batch_decode(preds, skip_special_tokens=True, clean_up_tokenization_spaces=True)
targets = tokenizer.batch_decode(targets, skip_special_tokens=True, clean_up_tokenization_spaces=True)
action_correct = 0
text_correct = 0
type_correct = 0
reference_test_positions = test_set.anno_positions
output_data = []
pattern = r'(?<=Action Decision:\s).*'
assert len(preds) == len(targets) == len(reference_test_positions)
for idx, pred in enumerate(preds):
try:
result = re.search(pattern, targets[idx])
target_text = result.group(0)
target_text = target_text.strip()
reference = eval("{" + target_text + "}")
except:
print("reference error")
continue
try:
result = re.search(pattern, preds[idx])
pred_text = result.group(0)
pred_text = pred_text.strip()
pred = eval("{" + pred_text + "}")
action_1_touch_yx = eval(pred["touch_point"])
action_1_lift_yx = eval(pred["lift_point"])
action_1_action_type = action_type.ActionType[pred["action_type"]].value
action_1_typed_text = pred["typed_text"].lower()
action_1_typed_text = action_1_typed_text.strip()
action_1_wrap = f'"action_type": "{action_1_action_type}", "touch_point": "{action_1_touch_yx}", "lift_point": "{action_1_lift_yx}", "typed_text": "{action_1_typed_text}"'
action_1_wrap = action_1_wrap.replace('"', "'")
except:
pred = '{ "action_type": "TYPE", "touch_point": "[-1.0, -1.0]", "lift_point": "[-1.0, -1.0]", "typed_text": "Invalid"}'
action_2_touch_yx = eval(reference["touch_point"])
action_2_lift_yx = eval(reference["lift_point"])
action_2_action_type = action_type.ActionType[reference["action_type"]].value
action_2_typed_text = reference["typed_text"].lower()
action_2_wrap = f'"action_type": "{action_2_action_type}", "touch_point": "{action_2_touch_yx}", "lift_point": "{action_2_lift_yx}", "typed_text": "{action_2_typed_text}"'
action_2_wrap = action_2_wrap.replace('"', "'")
annotation_positions = reference_test_positions[idx]
try:
check_match = action_matching.check_actions_match(
action_1_touch_yx,
action_1_lift_yx,
action_1_action_type,
action_2_touch_yx,
action_2_lift_yx,
action_2_action_type,
annotation_positions
)
except Exception as exc:
print(idx, action_1_touch_yx, action_1_lift_yx)
check_match = False
match_label = "invalid"
if check_match:
action_correct += 1
match_label = 1
else:
match_label = 0
if check_match and (action_1_typed_text in action_2_typed_text or action_2_typed_text in action_1_typed_text):
text_correct += 1
if action_1_action_type == action_2_action_type:
type_correct += 1
action_data = {"pred": action_1_wrap, "target": action_2_wrap, "match_label": match_label}
output_data.append(action_data)
metrics["accuracy"] = "{:.2f}".format(action_correct/len(targets) * 100)
metrics["text_acc"] = "{:.2f}".format(text_correct/len(targets) * 100)
metrics["type_acc"] = "{:.2f}".format(type_correct/len(targets) * 100)
metrics["action_correct"] = action_correct
metrics["text_correct"] = text_correct
metrics["type_correct"] = type_correct
metrics["total_num"] = len(targets)
print(metrics)
output_data = {
"metrics": metrics,
"data": output_data
}
print(save_dir)
if args.eval_name:
output_prediction_file = os.path.join(save_dir,f"predictions_ans_test_{args.eval_name}.json")
else:
output_prediction_file = os.path.join(save_dir,"predictions_ans_test.json")
with open(output_prediction_file, "w") as writer:
writer.write(json.dumps(output_data, indent=4))
|