|
--- |
|
library_name: transformers |
|
datasets: |
|
- WebOrganizer/TopicAnnotations-Llama-3.1-8B |
|
- WebOrganizer/TopicAnnotations-Llama-3.1-405B-FP8 |
|
base_model: |
|
- Alibaba-NLP/gte-base-en-v1.5 |
|
--- |
|
# WebOrganizer/TopicClassifier |
|
|
|
[[Paper](https://arxiv.org/abs/2502.10341)] [[Website](https://weborganizer.allenai.org)] [[GitHub](https://github.com/CodeCreator/WebOrganizer)] |
|
|
|
The TopicClassifier organizes web content into 17 categories based on the URL and text contents of web pages. |
|
The model is a [gte-base-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-base-en-v1.5) with 140M parameters fine-tuned on the following training data: |
|
1. [WebOrganizer/TopicAnnotations-Llama-3.1-8B](https://huggingface.co/datasets/WebOrganizer/TopicAnnotations-Llama-3.1-8B): 1M documents annotated by Llama-3.1-8B (first-stage training) |
|
2. [WebOrganizer/TopicAnnotations-Llama-3.1-405B-FP8](https://huggingface.co/datasets/WebOrganizer/TopicAnnotations-Llama-3.1-405B-FP8): 100K documents annotated by Llama-3.1-405B-FP8 (second-stage training) |
|
|
|
#### All Domain Classifiers |
|
- [WebOrganizer/FormatClassifier](https://huggingface.co/WebOrganizer/FormatClassifier) |
|
- [WebOrganizer/FormatClassifier-NoURL](https://huggingface.co/WebOrganizer/FormatClassifier-NoURL) |
|
- [WebOrganizer/TopicClassifier](https://huggingface.co/WebOrganizer/TopicClassifier) *← you are here!* |
|
- [WebOrganizer/TopicClassifier-NoURL](https://huggingface.co/WebOrganizer/TopicClassifier-NoURL) |
|
|
|
## Usage |
|
|
|
This classifier expects input in the following input format: |
|
``` |
|
{url} |
|
|
|
{text} |
|
``` |
|
|
|
Example: |
|
```python |
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("WebOrganizer/TopicClassifier") |
|
model = AutoModelForSequenceClassification.from_pretrained( |
|
"WebOrganizer/TopicClassifier", |
|
trust_remote_code=True, |
|
use_memory_efficient_attention=False) |
|
|
|
web_page = """http://www.example.com |
|
|
|
How to build a computer from scratch? Here are the components you need...""" |
|
|
|
inputs = tokenizer([web_page], return_tensors="pt") |
|
outputs = model(**inputs) |
|
|
|
probs = outputs.logits.softmax(dim=-1) |
|
print(probs.argmax(dim=-1)) |
|
# -> 5 ("Hardware" topic) |
|
``` |
|
|
|
You can convert the `logits` of the model with a softmax to obtain a probability distribution over the following 24 categories (in order of labels, also see `id2label` and `label2id` in the model config): |
|
1. Adult |
|
2. Art & Design |
|
3. Software Dev. |
|
4. Crime & Law |
|
5. Education & Jobs |
|
6. Hardware |
|
7. Entertainment |
|
8. Social Life |
|
9. Fashion & Beauty |
|
10. Finance & Business |
|
11. Food & Dining |
|
12. Games |
|
13. Health |
|
14. History |
|
15. Home & Hobbies |
|
16. Industrial |
|
17. Literature |
|
18. Politics |
|
19. Religion |
|
20. Science & Tech. |
|
21. Software |
|
22. Sports & Fitness |
|
23. Transportation |
|
24. Travel |
|
|
|
The full definitions of the categories can be found in the [taxonomy config](https://github.com/CodeCreator/WebOrganizer/blob/main/define_domains/taxonomies/topics.yaml). |
|
|
|
#### Efficient Inference |
|
We recommend that you use the efficient gte-base-en-v1.5 implementation by enabling unpadding and memory efficient attention. This __requires installing `xformers`__ (see more [here](https://huggingface.co/Alibaba-NLP/new-impl#recommendation-enable-unpadding-and-acceleration-with-xformers)) and loading the model like: |
|
```python |
|
AutoModelForSequenceClassification.from_pretrained( |
|
"WebOrganizer/TopicClassifier", |
|
trust_remote_code=True, |
|
unpad_inputs=True, |
|
use_memory_efficient_attention=True, |
|
torch_dtype=torch.bfloat16 |
|
) |
|
``` |
|
|
|
## Citation |
|
```bibtex |
|
@article{wettig2025organize, |
|
title={Organize the Web: Constructing Domains Enhances Pre-Training Data Curation}, |
|
author={Alexander Wettig and Kyle Lo and Sewon Min and Hannaneh Hajishirzi and Danqi Chen and Luca Soldaini}, |
|
journal={arXiv preprint arXiv:2502.10341}, |
|
year={2025} |
|
} |
|
``` |