WIDDX-AI-v1

WIDDX-AI-v1 is a fine-tuned conversational AI assistant based on Qwen2.5-7B-Instruct, optimized for instruction following and general conversation using LoRA (Low-Rank Adaptation) technique.

Model Details

  • Base Model: Qwen/Qwen2.5-7B-Instruct
  • Fine-tuning Method: LoRA (Low-Rank Adaptation)
  • Languages: English, Arabic
  • Model Type: Causal Language Model
  • License: Apache 2.0

Capabilities

This model excels at:

  • General Conversation: Natural, engaging dialogue
  • Instruction Following: Accurate execution of user instructions
  • Code Generation: Writing and explaining code in multiple programming languages
  • Question Answering: Providing informative responses to various topics
  • Text Analysis: Understanding and processing textual content
  • Creative Writing: Generating creative content and stories

Usage

Basic Usage

from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

# Load model and tokenizer
tokenizer = AutoTokenizer.from_pretrained("WIDDX-AI/WIDDX-AI-v1", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("WIDDX-AI/WIDDX-AI-v1", trust_remote_code=True)

# Prepare input
messages = [
    {"role": "user", "content": "Explain machine learning in simple terms"}
]

text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = tokenizer([text], return_tensors="pt")

# Generate response
with torch.no_grad():
    outputs = model.generate(
        **inputs,
        max_new_tokens=256,
        temperature=0.7,
        top_p=0.9,
        do_sample=True
    )

response = tokenizer.decode(outputs[0][len(inputs.input_ids[0]):], skip_special_tokens=True)
print(response)

Memory-Efficient Loading

For systems with limited GPU memory, use 4-bit quantization:

from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
import torch

# Configure quantization
quantization_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype=torch.float16,
    bnb_4bit_use_double_quant=True
)

# Load with quantization
model = AutoModelForCausalLM.from_pretrained(
    "WIDDX-AI/WIDDX-AI-v1",
    quantization_config=quantization_config,
    device_map="auto",
    trust_remote_code=True
)

CPU Inference

For CPU-only inference:

model = AutoModelForCausalLM.from_pretrained(
    "WIDDX-AI/WIDDX-AI-v1",
    torch_dtype=torch.float32,
    trust_remote_code=True
)

Training Details

Dataset

  • Custom instruction-following dataset with high-quality examples
  • Diverse topics covering conversation, coding, analysis, and creativity
  • Carefully curated and filtered for quality and safety

Training Parameters

  • Method: LoRA (Low-Rank Adaptation)
  • Rank: 16
  • Alpha: 32
  • Dropout: 0.05
  • Target Modules: q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj
  • Learning Rate: 2e-4
  • Batch Size: 4 (with gradient accumulation)
  • Epochs: 3

Hardware

  • Training conducted on NVIDIA GPUs with 4-bit quantization
  • Compatible with both GPU and CPU inference

Performance

The model demonstrates strong performance across various tasks:

  • High instruction following accuracy
  • Natural conversational flow
  • Accurate code generation and explanation
  • Comprehensive knowledge across multiple domains

Limitations

  • May occasionally generate incorrect factual information
  • Performance depends on input quality and clarity
  • Limited by the knowledge cutoff of the base model
  • Requires appropriate prompt formatting for optimal results

Safety and Bias

This model inherits the safety measures and potential biases from its base model. Users should:

  • Review outputs for appropriateness
  • Implement additional safety measures in production
  • Be aware of potential cultural and linguistic biases

Citation

If you use this model in your research or applications, please cite:

@misc{widdx-ai-v1,
  title={WIDDX-AI-v1: A Fine-tuned Conversational Assistant},
  author={WIDDX-AI},
  year={2024},
  url={https://huggingface.co/WIDDX-AI/WIDDX-AI-v1}
}

Contact

For questions, issues, or collaboration opportunities, please visit our repository or contact the WIDDX-AI team.


Built with ❤️ by the WIDDX-AI team

Downloads last month
-
Safetensors
Model size
77.7M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for WIDDX-AI/WIDDX-AI-v1

Base model

Qwen/Qwen2.5-7B
Adapter
(622)
this model