|
from __future__ import print_function, division |
|
import os |
|
import sys |
|
import math |
|
import torch |
|
import cv2 |
|
from PIL import Image |
|
from skimage import io |
|
from skimage import transform as ski_transform |
|
from scipy import ndimage |
|
import numpy as np |
|
import matplotlib |
|
import matplotlib.pyplot as plt |
|
from torch.utils.data import Dataset, DataLoader |
|
from torchvision import transforms, utils |
|
|
|
def _gaussian( |
|
size=3, sigma=0.25, amplitude=1, normalize=False, width=None, |
|
height=None, sigma_horz=None, sigma_vert=None, mean_horz=0.5, |
|
mean_vert=0.5): |
|
|
|
if width is None: |
|
width = size |
|
if height is None: |
|
height = size |
|
if sigma_horz is None: |
|
sigma_horz = sigma |
|
if sigma_vert is None: |
|
sigma_vert = sigma |
|
center_x = mean_horz * width + 0.5 |
|
center_y = mean_vert * height + 0.5 |
|
gauss = np.empty((height, width), dtype=np.float32) |
|
|
|
for i in range(height): |
|
for j in range(width): |
|
gauss[i][j] = amplitude * math.exp(-(math.pow((j + 1 - center_x) / ( |
|
sigma_horz * width), 2) / 2.0 + math.pow((i + 1 - center_y) / (sigma_vert * height), 2) / 2.0)) |
|
if normalize: |
|
gauss = gauss / np.sum(gauss) |
|
return gauss |
|
|
|
def draw_gaussian(image, point, sigma): |
|
|
|
ul = [np.floor(np.floor(point[0]) - 3 * sigma), |
|
np.floor(np.floor(point[1]) - 3 * sigma)] |
|
br = [np.floor(np.floor(point[0]) + 3 * sigma), |
|
np.floor(np.floor(point[1]) + 3 * sigma)] |
|
if (ul[0] > image.shape[1] or ul[1] > |
|
image.shape[0] or br[0] < 1 or br[1] < 1): |
|
return image |
|
size = 6 * sigma + 1 |
|
g = _gaussian(size) |
|
g_x = [int(max(1, -ul[0])), int(min(br[0], image.shape[1])) - |
|
int(max(1, ul[0])) + int(max(1, -ul[0]))] |
|
g_y = [int(max(1, -ul[1])), int(min(br[1], image.shape[0])) - |
|
int(max(1, ul[1])) + int(max(1, -ul[1]))] |
|
img_x = [int(max(1, ul[0])), int(min(br[0], image.shape[1]))] |
|
img_y = [int(max(1, ul[1])), int(min(br[1], image.shape[0]))] |
|
assert (g_x[0] > 0 and g_y[1] > 0) |
|
correct = False |
|
while not correct: |
|
try: |
|
image[img_y[0] - 1:img_y[1], img_x[0] - 1:img_x[1] |
|
] = image[img_y[0] - 1:img_y[1], img_x[0] - 1:img_x[1]] + g[g_y[0] - 1:g_y[1], g_x[0] - 1:g_x[1]] |
|
correct = True |
|
except: |
|
print('img_x: {}, img_y: {}, g_x:{}, g_y:{}, point:{}, g_shape:{}, ul:{}, br:{}'.format(img_x, img_y, g_x, g_y, point, g.shape, ul, br)) |
|
ul = [np.floor(np.floor(point[0]) - 3 * sigma), |
|
np.floor(np.floor(point[1]) - 3 * sigma)] |
|
br = [np.floor(np.floor(point[0]) + 3 * sigma), |
|
np.floor(np.floor(point[1]) + 3 * sigma)] |
|
g_x = [int(max(1, -ul[0])), int(min(br[0], image.shape[1])) - |
|
int(max(1, ul[0])) + int(max(1, -ul[0]))] |
|
g_y = [int(max(1, -ul[1])), int(min(br[1], image.shape[0])) - |
|
int(max(1, ul[1])) + int(max(1, -ul[1]))] |
|
img_x = [int(max(1, ul[0])), int(min(br[0], image.shape[1]))] |
|
img_y = [int(max(1, ul[1])), int(min(br[1], image.shape[0]))] |
|
pass |
|
image[image > 1] = 1 |
|
return image |
|
|
|
def transform(point, center, scale, resolution, rotation=0, invert=False): |
|
_pt = np.ones(3) |
|
_pt[0] = point[0] |
|
_pt[1] = point[1] |
|
|
|
h = 200.0 * scale |
|
t = np.eye(3) |
|
t[0, 0] = resolution / h |
|
t[1, 1] = resolution / h |
|
t[0, 2] = resolution * (-center[0] / h + 0.5) |
|
t[1, 2] = resolution * (-center[1] / h + 0.5) |
|
|
|
if rotation != 0: |
|
rotation = -rotation |
|
r = np.eye(3) |
|
ang = rotation * math.pi / 180.0 |
|
s = math.sin(ang) |
|
c = math.cos(ang) |
|
r[0][0] = c |
|
r[0][1] = -s |
|
r[1][0] = s |
|
r[1][1] = c |
|
|
|
t_ = np.eye(3) |
|
t_[0][2] = -resolution / 2.0 |
|
t_[1][2] = -resolution / 2.0 |
|
t_inv = torch.eye(3) |
|
t_inv[0][2] = resolution / 2.0 |
|
t_inv[1][2] = resolution / 2.0 |
|
t = reduce(np.matmul, [t_inv, r, t_, t]) |
|
|
|
if invert: |
|
t = np.linalg.inv(t) |
|
new_point = (np.matmul(t, _pt))[0:2] |
|
|
|
return new_point.astype(int) |
|
|
|
def cv_crop(image, landmarks, center, scale, resolution=256, center_shift=0): |
|
new_image = cv2.copyMakeBorder(image, center_shift, |
|
center_shift, |
|
center_shift, |
|
center_shift, |
|
cv2.BORDER_CONSTANT, value=[0,0,0]) |
|
new_landmarks = landmarks.copy() |
|
if center_shift != 0: |
|
center[0] += center_shift |
|
center[1] += center_shift |
|
new_landmarks = new_landmarks + center_shift |
|
length = 200 * scale |
|
top = int(center[1] - length // 2) |
|
bottom = int(center[1] + length // 2) |
|
left = int(center[0] - length // 2) |
|
right = int(center[0] + length // 2) |
|
y_pad = abs(min(top, new_image.shape[0] - bottom, 0)) |
|
x_pad = abs(min(left, new_image.shape[1] - right, 0)) |
|
top, bottom, left, right = top + y_pad, bottom + y_pad, left + x_pad, right + x_pad |
|
new_image = cv2.copyMakeBorder(new_image, y_pad, |
|
y_pad, |
|
x_pad, |
|
x_pad, |
|
cv2.BORDER_CONSTANT, value=[0,0,0]) |
|
new_image = new_image[top:bottom, left:right] |
|
new_image = cv2.resize(new_image, dsize=(int(resolution), int(resolution)), |
|
interpolation=cv2.INTER_LINEAR) |
|
new_landmarks[:, 0] = (new_landmarks[:, 0] + x_pad - left) * resolution / length |
|
new_landmarks[:, 1] = (new_landmarks[:, 1] + y_pad - top) * resolution / length |
|
return new_image, new_landmarks |
|
|
|
def cv_rotate(image, landmarks, heatmap, rot, scale, resolution=256): |
|
img_mat = cv2.getRotationMatrix2D((resolution//2, resolution//2), rot, scale) |
|
ones = np.ones(shape=(landmarks.shape[0], 1)) |
|
stacked_landmarks = np.hstack([landmarks, ones]) |
|
new_landmarks = img_mat.dot(stacked_landmarks.T).T |
|
if np.max(new_landmarks) > 255 or np.min(new_landmarks) < 0: |
|
return image, landmarks, heatmap |
|
else: |
|
new_image = cv2.warpAffine(image, img_mat, (resolution, resolution)) |
|
if heatmap is not None: |
|
new_heatmap = np.zeros((heatmap.shape[0], 64, 64)) |
|
for i in range(heatmap.shape[0]): |
|
if new_landmarks[i][0] > 0: |
|
new_heatmap[i] = draw_gaussian(new_heatmap[i], |
|
new_landmarks[i]/4.0+1, 1) |
|
return new_image, new_landmarks, new_heatmap |
|
|
|
def show_landmarks(image, heatmap, gt_landmarks, gt_heatmap): |
|
"""Show image with pred_landmarks""" |
|
pred_landmarks = [] |
|
pred_landmarks, _ = get_preds_fromhm(torch.from_numpy(heatmap).unsqueeze(0)) |
|
pred_landmarks = pred_landmarks.squeeze()*4 |
|
|
|
|
|
heatmap = np.max(gt_heatmap, axis=0) |
|
heatmap = heatmap / np.max(heatmap) |
|
|
|
image = image.astype(np.uint8) |
|
heatmap = np.max(gt_heatmap, axis=0) |
|
heatmap = ski_transform.resize(heatmap, (image.shape[0], image.shape[1])) |
|
heatmap *= 255 |
|
heatmap = heatmap.astype(np.uint8) |
|
heatmap = cv2.applyColorMap(heatmap, cv2.COLORMAP_JET) |
|
plt.imshow(image) |
|
plt.scatter(gt_landmarks[:, 0], gt_landmarks[:, 1], s=0.5, marker='.', c='g') |
|
plt.scatter(pred_landmarks[:, 0], pred_landmarks[:, 1], s=0.5, marker='.', c='r') |
|
plt.pause(0.001) |
|
|
|
def fan_NME(pred_heatmaps, gt_landmarks, num_landmarks=68): |
|
''' |
|
Calculate total NME for a batch of data |
|
|
|
Args: |
|
pred_heatmaps: torch tensor of size [batch, points, height, width] |
|
gt_landmarks: torch tesnsor of size [batch, points, x, y] |
|
|
|
Returns: |
|
nme: sum of nme for this batch |
|
''' |
|
nme = 0 |
|
pred_landmarks, _ = get_preds_fromhm(pred_heatmaps) |
|
pred_landmarks = pred_landmarks.numpy() |
|
gt_landmarks = gt_landmarks.numpy() |
|
for i in range(pred_landmarks.shape[0]): |
|
pred_landmark = pred_landmarks[i] * 4.0 |
|
gt_landmark = gt_landmarks[i] |
|
|
|
if num_landmarks == 68: |
|
left_eye = np.average(gt_landmark[36:42], axis=0) |
|
right_eye = np.average(gt_landmark[42:48], axis=0) |
|
norm_factor = np.linalg.norm(left_eye - right_eye) |
|
|
|
elif num_landmarks == 98: |
|
norm_factor = np.linalg.norm(gt_landmark[60]- gt_landmark[72]) |
|
elif num_landmarks == 19: |
|
left, top = gt_landmark[-2, :] |
|
right, bottom = gt_landmark[-1, :] |
|
norm_factor = math.sqrt(abs(right - left)*abs(top-bottom)) |
|
gt_landmark = gt_landmark[:-2, :] |
|
elif num_landmarks == 29: |
|
|
|
norm_factor = np.linalg.norm(gt_landmark[16]- gt_landmark[17]) |
|
nme += (np.sum(np.linalg.norm(pred_landmark - gt_landmark, axis=1)) / pred_landmark.shape[0]) / norm_factor |
|
return nme |
|
|
|
def fan_NME_hm(pred_heatmaps, gt_heatmaps, num_landmarks=68): |
|
''' |
|
Calculate total NME for a batch of data |
|
|
|
Args: |
|
pred_heatmaps: torch tensor of size [batch, points, height, width] |
|
gt_landmarks: torch tesnsor of size [batch, points, x, y] |
|
|
|
Returns: |
|
nme: sum of nme for this batch |
|
''' |
|
nme = 0 |
|
pred_landmarks, _ = get_index_fromhm(pred_heatmaps) |
|
pred_landmarks = pred_landmarks.numpy() |
|
gt_landmarks = gt_landmarks.numpy() |
|
for i in range(pred_landmarks.shape[0]): |
|
pred_landmark = pred_landmarks[i] * 4.0 |
|
gt_landmark = gt_landmarks[i] |
|
if num_landmarks == 68: |
|
left_eye = np.average(gt_landmark[36:42], axis=0) |
|
right_eye = np.average(gt_landmark[42:48], axis=0) |
|
norm_factor = np.linalg.norm(left_eye - right_eye) |
|
else: |
|
norm_factor = np.linalg.norm(gt_landmark[60]- gt_landmark[72]) |
|
nme += (np.sum(np.linalg.norm(pred_landmark - gt_landmark, axis=1)) / pred_landmark.shape[0]) / norm_factor |
|
return nme |
|
|
|
def power_transform(img, power): |
|
img = np.array(img) |
|
img_new = np.power((img/255.0), power) * 255.0 |
|
img_new = img_new.astype(np.uint8) |
|
img_new = Image.fromarray(img_new) |
|
return img_new |
|
|
|
def get_preds_fromhm(hm, center=None, scale=None, rot=None): |
|
max, idx = torch.max( |
|
hm.view(hm.size(0), hm.size(1), hm.size(2) * hm.size(3)), 2) |
|
idx += 1 |
|
preds = idx.view(idx.size(0), idx.size(1), 1).repeat(1, 1, 2).float() |
|
preds[..., 0].apply_(lambda x: (x - 1) % hm.size(3) + 1) |
|
preds[..., 1].add_(-1).div_(hm.size(2)).floor_().add_(1) |
|
|
|
for i in range(preds.size(0)): |
|
for j in range(preds.size(1)): |
|
hm_ = hm[i, j, :] |
|
pX, pY = int(preds[i, j, 0]) - 1, int(preds[i, j, 1]) - 1 |
|
if pX > 0 and pX < 63 and pY > 0 and pY < 63: |
|
diff = torch.FloatTensor( |
|
[hm_[pY, pX + 1] - hm_[pY, pX - 1], |
|
hm_[pY + 1, pX] - hm_[pY - 1, pX]]) |
|
preds[i, j].add_(diff.sign_().mul_(.25)) |
|
|
|
preds.add_(-0.5) |
|
|
|
preds_orig = torch.zeros(preds.size()) |
|
if center is not None and scale is not None: |
|
for i in range(hm.size(0)): |
|
for j in range(hm.size(1)): |
|
preds_orig[i, j] = transform( |
|
preds[i, j], center, scale, hm.size(2), rot, True) |
|
|
|
return preds, preds_orig |
|
|
|
def get_index_fromhm(hm): |
|
max, idx = torch.max( |
|
hm.view(hm.size(0), hm.size(1), hm.size(2) * hm.size(3)), 2) |
|
preds = idx.view(idx.size(0), idx.size(1), 1).repeat(1, 1, 2).float() |
|
preds[..., 0].remainder_(hm.size(3)) |
|
preds[..., 1].div_(hm.size(2)).floor_() |
|
|
|
for i in range(preds.size(0)): |
|
for j in range(preds.size(1)): |
|
hm_ = hm[i, j, :] |
|
pX, pY = int(preds[i, j, 0]), int(preds[i, j, 1]) |
|
if pX > 0 and pX < 63 and pY > 0 and pY < 63: |
|
diff = torch.FloatTensor( |
|
[hm_[pY, pX + 1] - hm_[pY, pX - 1], |
|
hm_[pY + 1, pX] - hm_[pY - 1, pX]]) |
|
preds[i, j].add_(diff.sign_().mul_(.25)) |
|
|
|
return preds |
|
|
|
def shuffle_lr(parts, num_landmarks=68, pairs=None): |
|
if num_landmarks == 68: |
|
if pairs is None: |
|
pairs = [[0, 16], [1, 15], [2, 14], [3, 13], [4, 12], [5, 11], [6, 10], |
|
[7, 9], [17, 26], [18, 25], [19, 24], [20, 23], [21, 22], [36, 45], |
|
[37, 44], [38, 43], [39, 42], [41, 46], [40, 47], [31, 35], [32, 34], |
|
[50, 52], [49, 53], [48, 54], [61, 63], [60, 64], [67, 65], [59, 55], [58, 56]] |
|
elif num_landmarks == 98: |
|
if pairs is None: |
|
pairs = [[0, 32], [1,31], [2, 30], [3, 29], [4, 28], [5, 27], [6, 26], [7, 25], [8, 24], [9, 23], [10, 22], [11, 21], [12, 20], [13, 19], [14, 18], [15, 17], [33, 46], [34, 45], [35, 44], [36, 43], [37, 42], [38, 50], [39, 49], [40, 48], [41, 47], [60, 72], [61, 71], [62, 70], [63, 69], [64, 68], [65, 75], [66, 74], [67, 73], [96, 97], [55, 59], [56, 58], [76, 82], [77, 81], [78, 80], [88, 92], [89, 91], [95, 93], [87, 83], [86, 84]] |
|
elif num_landmarks == 19: |
|
if pairs is None: |
|
pairs = [[0, 5], [1, 4], [2, 3], [6, 11], [7, 10], [8, 9], [12, 14], [15, 17]] |
|
elif num_landmarks == 29: |
|
if pairs is None: |
|
pairs = [[0, 1], [4, 6], [5, 7], [2, 3], [8, 9], [12, 14], [16, 17], [13, 15], [10, 11], [18, 19], [22, 23]] |
|
for matched_p in pairs: |
|
idx1, idx2 = matched_p[0], matched_p[1] |
|
tmp = np.copy(parts[idx1]) |
|
np.copyto(parts[idx1], parts[idx2]) |
|
np.copyto(parts[idx2], tmp) |
|
return parts |
|
|
|
|
|
def generate_weight_map(weight_map,heatmap): |
|
|
|
k_size = 3 |
|
dilate = ndimage.grey_dilation(heatmap ,size=(k_size,k_size)) |
|
weight_map[np.where(dilate>0.2)] = 1 |
|
return weight_map |
|
|
|
def fig2data(fig): |
|
""" |
|
@brief Convert a Matplotlib figure to a 4D numpy array with RGBA channels and return it |
|
@param fig a matplotlib figure |
|
@return a numpy 3D array of RGBA values |
|
""" |
|
|
|
fig.canvas.draw ( ) |
|
|
|
|
|
w,h = fig.canvas.get_width_height() |
|
buf = np.fromstring (fig.canvas.tostring_rgb(), dtype=np.uint8) |
|
buf.shape = (w, h, 3) |
|
|
|
|
|
buf = np.roll (buf, 3, axis=2) |
|
return buf |
|
|