File size: 14,681 Bytes
7cdd981 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 |
from __future__ import print_function, division
import os
import sys
import math
import torch
import cv2
from PIL import Image
from skimage import io
from skimage import transform as ski_transform
from scipy import ndimage
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms, utils
def _gaussian(
size=3, sigma=0.25, amplitude=1, normalize=False, width=None,
height=None, sigma_horz=None, sigma_vert=None, mean_horz=0.5,
mean_vert=0.5):
# handle some defaults
if width is None:
width = size
if height is None:
height = size
if sigma_horz is None:
sigma_horz = sigma
if sigma_vert is None:
sigma_vert = sigma
center_x = mean_horz * width + 0.5
center_y = mean_vert * height + 0.5
gauss = np.empty((height, width), dtype=np.float32)
# generate kernel
for i in range(height):
for j in range(width):
gauss[i][j] = amplitude * math.exp(-(math.pow((j + 1 - center_x) / (
sigma_horz * width), 2) / 2.0 + math.pow((i + 1 - center_y) / (sigma_vert * height), 2) / 2.0))
if normalize:
gauss = gauss / np.sum(gauss)
return gauss
def draw_gaussian(image, point, sigma):
# Check if the gaussian is inside
ul = [np.floor(np.floor(point[0]) - 3 * sigma),
np.floor(np.floor(point[1]) - 3 * sigma)]
br = [np.floor(np.floor(point[0]) + 3 * sigma),
np.floor(np.floor(point[1]) + 3 * sigma)]
if (ul[0] > image.shape[1] or ul[1] >
image.shape[0] or br[0] < 1 or br[1] < 1):
return image
size = 6 * sigma + 1
g = _gaussian(size)
g_x = [int(max(1, -ul[0])), int(min(br[0], image.shape[1])) -
int(max(1, ul[0])) + int(max(1, -ul[0]))]
g_y = [int(max(1, -ul[1])), int(min(br[1], image.shape[0])) -
int(max(1, ul[1])) + int(max(1, -ul[1]))]
img_x = [int(max(1, ul[0])), int(min(br[0], image.shape[1]))]
img_y = [int(max(1, ul[1])), int(min(br[1], image.shape[0]))]
assert (g_x[0] > 0 and g_y[1] > 0)
correct = False
while not correct:
try:
image[img_y[0] - 1:img_y[1], img_x[0] - 1:img_x[1]
] = image[img_y[0] - 1:img_y[1], img_x[0] - 1:img_x[1]] + g[g_y[0] - 1:g_y[1], g_x[0] - 1:g_x[1]]
correct = True
except:
print('img_x: {}, img_y: {}, g_x:{}, g_y:{}, point:{}, g_shape:{}, ul:{}, br:{}'.format(img_x, img_y, g_x, g_y, point, g.shape, ul, br))
ul = [np.floor(np.floor(point[0]) - 3 * sigma),
np.floor(np.floor(point[1]) - 3 * sigma)]
br = [np.floor(np.floor(point[0]) + 3 * sigma),
np.floor(np.floor(point[1]) + 3 * sigma)]
g_x = [int(max(1, -ul[0])), int(min(br[0], image.shape[1])) -
int(max(1, ul[0])) + int(max(1, -ul[0]))]
g_y = [int(max(1, -ul[1])), int(min(br[1], image.shape[0])) -
int(max(1, ul[1])) + int(max(1, -ul[1]))]
img_x = [int(max(1, ul[0])), int(min(br[0], image.shape[1]))]
img_y = [int(max(1, ul[1])), int(min(br[1], image.shape[0]))]
pass
image[image > 1] = 1
return image
def transform(point, center, scale, resolution, rotation=0, invert=False):
_pt = np.ones(3)
_pt[0] = point[0]
_pt[1] = point[1]
h = 200.0 * scale
t = np.eye(3)
t[0, 0] = resolution / h
t[1, 1] = resolution / h
t[0, 2] = resolution * (-center[0] / h + 0.5)
t[1, 2] = resolution * (-center[1] / h + 0.5)
if rotation != 0:
rotation = -rotation
r = np.eye(3)
ang = rotation * math.pi / 180.0
s = math.sin(ang)
c = math.cos(ang)
r[0][0] = c
r[0][1] = -s
r[1][0] = s
r[1][1] = c
t_ = np.eye(3)
t_[0][2] = -resolution / 2.0
t_[1][2] = -resolution / 2.0
t_inv = torch.eye(3)
t_inv[0][2] = resolution / 2.0
t_inv[1][2] = resolution / 2.0
t = reduce(np.matmul, [t_inv, r, t_, t])
if invert:
t = np.linalg.inv(t)
new_point = (np.matmul(t, _pt))[0:2]
return new_point.astype(int)
def cv_crop(image, landmarks, center, scale, resolution=256, center_shift=0):
new_image = cv2.copyMakeBorder(image, center_shift,
center_shift,
center_shift,
center_shift,
cv2.BORDER_CONSTANT, value=[0,0,0])
new_landmarks = landmarks.copy()
if center_shift != 0:
center[0] += center_shift
center[1] += center_shift
new_landmarks = new_landmarks + center_shift
length = 200 * scale
top = int(center[1] - length // 2)
bottom = int(center[1] + length // 2)
left = int(center[0] - length // 2)
right = int(center[0] + length // 2)
y_pad = abs(min(top, new_image.shape[0] - bottom, 0))
x_pad = abs(min(left, new_image.shape[1] - right, 0))
top, bottom, left, right = top + y_pad, bottom + y_pad, left + x_pad, right + x_pad
new_image = cv2.copyMakeBorder(new_image, y_pad,
y_pad,
x_pad,
x_pad,
cv2.BORDER_CONSTANT, value=[0,0,0])
new_image = new_image[top:bottom, left:right]
new_image = cv2.resize(new_image, dsize=(int(resolution), int(resolution)),
interpolation=cv2.INTER_LINEAR)
new_landmarks[:, 0] = (new_landmarks[:, 0] + x_pad - left) * resolution / length
new_landmarks[:, 1] = (new_landmarks[:, 1] + y_pad - top) * resolution / length
return new_image, new_landmarks
def cv_rotate(image, landmarks, heatmap, rot, scale, resolution=256):
img_mat = cv2.getRotationMatrix2D((resolution//2, resolution//2), rot, scale)
ones = np.ones(shape=(landmarks.shape[0], 1))
stacked_landmarks = np.hstack([landmarks, ones])
new_landmarks = img_mat.dot(stacked_landmarks.T).T
if np.max(new_landmarks) > 255 or np.min(new_landmarks) < 0:
return image, landmarks, heatmap
else:
new_image = cv2.warpAffine(image, img_mat, (resolution, resolution))
if heatmap is not None:
new_heatmap = np.zeros((heatmap.shape[0], 64, 64))
for i in range(heatmap.shape[0]):
if new_landmarks[i][0] > 0:
new_heatmap[i] = draw_gaussian(new_heatmap[i],
new_landmarks[i]/4.0+1, 1)
return new_image, new_landmarks, new_heatmap
def show_landmarks(image, heatmap, gt_landmarks, gt_heatmap):
"""Show image with pred_landmarks"""
pred_landmarks = []
pred_landmarks, _ = get_preds_fromhm(torch.from_numpy(heatmap).unsqueeze(0))
pred_landmarks = pred_landmarks.squeeze()*4
# pred_landmarks2 = get_preds_fromhm2(heatmap)
heatmap = np.max(gt_heatmap, axis=0)
heatmap = heatmap / np.max(heatmap)
# image = ski_transform.resize(image, (64, 64))*255
image = image.astype(np.uint8)
heatmap = np.max(gt_heatmap, axis=0)
heatmap = ski_transform.resize(heatmap, (image.shape[0], image.shape[1]))
heatmap *= 255
heatmap = heatmap.astype(np.uint8)
heatmap = cv2.applyColorMap(heatmap, cv2.COLORMAP_JET)
plt.imshow(image)
plt.scatter(gt_landmarks[:, 0], gt_landmarks[:, 1], s=0.5, marker='.', c='g')
plt.scatter(pred_landmarks[:, 0], pred_landmarks[:, 1], s=0.5, marker='.', c='r')
plt.pause(0.001) # pause a bit so that plots are updated
def fan_NME(pred_heatmaps, gt_landmarks, num_landmarks=68):
'''
Calculate total NME for a batch of data
Args:
pred_heatmaps: torch tensor of size [batch, points, height, width]
gt_landmarks: torch tesnsor of size [batch, points, x, y]
Returns:
nme: sum of nme for this batch
'''
nme = 0
pred_landmarks, _ = get_preds_fromhm(pred_heatmaps)
pred_landmarks = pred_landmarks.numpy()
gt_landmarks = gt_landmarks.numpy()
for i in range(pred_landmarks.shape[0]):
pred_landmark = pred_landmarks[i] * 4.0
gt_landmark = gt_landmarks[i]
if num_landmarks == 68:
left_eye = np.average(gt_landmark[36:42], axis=0)
right_eye = np.average(gt_landmark[42:48], axis=0)
norm_factor = np.linalg.norm(left_eye - right_eye)
# norm_factor = np.linalg.norm(gt_landmark[36]- gt_landmark[45])
elif num_landmarks == 98:
norm_factor = np.linalg.norm(gt_landmark[60]- gt_landmark[72])
elif num_landmarks == 19:
left, top = gt_landmark[-2, :]
right, bottom = gt_landmark[-1, :]
norm_factor = math.sqrt(abs(right - left)*abs(top-bottom))
gt_landmark = gt_landmark[:-2, :]
elif num_landmarks == 29:
# norm_factor = np.linalg.norm(gt_landmark[8]- gt_landmark[9])
norm_factor = np.linalg.norm(gt_landmark[16]- gt_landmark[17])
nme += (np.sum(np.linalg.norm(pred_landmark - gt_landmark, axis=1)) / pred_landmark.shape[0]) / norm_factor
return nme
def fan_NME_hm(pred_heatmaps, gt_heatmaps, num_landmarks=68):
'''
Calculate total NME for a batch of data
Args:
pred_heatmaps: torch tensor of size [batch, points, height, width]
gt_landmarks: torch tesnsor of size [batch, points, x, y]
Returns:
nme: sum of nme for this batch
'''
nme = 0
pred_landmarks, _ = get_index_fromhm(pred_heatmaps)
pred_landmarks = pred_landmarks.numpy()
gt_landmarks = gt_landmarks.numpy()
for i in range(pred_landmarks.shape[0]):
pred_landmark = pred_landmarks[i] * 4.0
gt_landmark = gt_landmarks[i]
if num_landmarks == 68:
left_eye = np.average(gt_landmark[36:42], axis=0)
right_eye = np.average(gt_landmark[42:48], axis=0)
norm_factor = np.linalg.norm(left_eye - right_eye)
else:
norm_factor = np.linalg.norm(gt_landmark[60]- gt_landmark[72])
nme += (np.sum(np.linalg.norm(pred_landmark - gt_landmark, axis=1)) / pred_landmark.shape[0]) / norm_factor
return nme
def power_transform(img, power):
img = np.array(img)
img_new = np.power((img/255.0), power) * 255.0
img_new = img_new.astype(np.uint8)
img_new = Image.fromarray(img_new)
return img_new
def get_preds_fromhm(hm, center=None, scale=None, rot=None):
max, idx = torch.max(
hm.view(hm.size(0), hm.size(1), hm.size(2) * hm.size(3)), 2)
idx += 1
preds = idx.view(idx.size(0), idx.size(1), 1).repeat(1, 1, 2).float()
preds[..., 0].apply_(lambda x: (x - 1) % hm.size(3) + 1)
preds[..., 1].add_(-1).div_(hm.size(2)).floor_().add_(1)
for i in range(preds.size(0)):
for j in range(preds.size(1)):
hm_ = hm[i, j, :]
pX, pY = int(preds[i, j, 0]) - 1, int(preds[i, j, 1]) - 1
if pX > 0 and pX < 63 and pY > 0 and pY < 63:
diff = torch.FloatTensor(
[hm_[pY, pX + 1] - hm_[pY, pX - 1],
hm_[pY + 1, pX] - hm_[pY - 1, pX]])
preds[i, j].add_(diff.sign_().mul_(.25))
preds.add_(-0.5)
preds_orig = torch.zeros(preds.size())
if center is not None and scale is not None:
for i in range(hm.size(0)):
for j in range(hm.size(1)):
preds_orig[i, j] = transform(
preds[i, j], center, scale, hm.size(2), rot, True)
return preds, preds_orig
def get_index_fromhm(hm):
max, idx = torch.max(
hm.view(hm.size(0), hm.size(1), hm.size(2) * hm.size(3)), 2)
preds = idx.view(idx.size(0), idx.size(1), 1).repeat(1, 1, 2).float()
preds[..., 0].remainder_(hm.size(3))
preds[..., 1].div_(hm.size(2)).floor_()
for i in range(preds.size(0)):
for j in range(preds.size(1)):
hm_ = hm[i, j, :]
pX, pY = int(preds[i, j, 0]), int(preds[i, j, 1])
if pX > 0 and pX < 63 and pY > 0 and pY < 63:
diff = torch.FloatTensor(
[hm_[pY, pX + 1] - hm_[pY, pX - 1],
hm_[pY + 1, pX] - hm_[pY - 1, pX]])
preds[i, j].add_(diff.sign_().mul_(.25))
return preds
def shuffle_lr(parts, num_landmarks=68, pairs=None):
if num_landmarks == 68:
if pairs is None:
pairs = [[0, 16], [1, 15], [2, 14], [3, 13], [4, 12], [5, 11], [6, 10],
[7, 9], [17, 26], [18, 25], [19, 24], [20, 23], [21, 22], [36, 45],
[37, 44], [38, 43], [39, 42], [41, 46], [40, 47], [31, 35], [32, 34],
[50, 52], [49, 53], [48, 54], [61, 63], [60, 64], [67, 65], [59, 55], [58, 56]]
elif num_landmarks == 98:
if pairs is None:
pairs = [[0, 32], [1,31], [2, 30], [3, 29], [4, 28], [5, 27], [6, 26], [7, 25], [8, 24], [9, 23], [10, 22], [11, 21], [12, 20], [13, 19], [14, 18], [15, 17], [33, 46], [34, 45], [35, 44], [36, 43], [37, 42], [38, 50], [39, 49], [40, 48], [41, 47], [60, 72], [61, 71], [62, 70], [63, 69], [64, 68], [65, 75], [66, 74], [67, 73], [96, 97], [55, 59], [56, 58], [76, 82], [77, 81], [78, 80], [88, 92], [89, 91], [95, 93], [87, 83], [86, 84]]
elif num_landmarks == 19:
if pairs is None:
pairs = [[0, 5], [1, 4], [2, 3], [6, 11], [7, 10], [8, 9], [12, 14], [15, 17]]
elif num_landmarks == 29:
if pairs is None:
pairs = [[0, 1], [4, 6], [5, 7], [2, 3], [8, 9], [12, 14], [16, 17], [13, 15], [10, 11], [18, 19], [22, 23]]
for matched_p in pairs:
idx1, idx2 = matched_p[0], matched_p[1]
tmp = np.copy(parts[idx1])
np.copyto(parts[idx1], parts[idx2])
np.copyto(parts[idx2], tmp)
return parts
def generate_weight_map(weight_map,heatmap):
k_size = 3
dilate = ndimage.grey_dilation(heatmap ,size=(k_size,k_size))
weight_map[np.where(dilate>0.2)] = 1
return weight_map
def fig2data(fig):
"""
@brief Convert a Matplotlib figure to a 4D numpy array with RGBA channels and return it
@param fig a matplotlib figure
@return a numpy 3D array of RGBA values
"""
# draw the renderer
fig.canvas.draw ( )
# Get the RGB buffer from the figure
w,h = fig.canvas.get_width_height()
buf = np.fromstring (fig.canvas.tostring_rgb(), dtype=np.uint8)
buf.shape = (w, h, 3)
# canvas.tostring_argb give pixmap in ARGB mode. Roll the ALPHA channel to have it in RGBA mode
buf = np.roll (buf, 3, axis=2)
return buf
|