metadata
library_name: transformers
model_name: Vikhrmodels/QVikhr-2.5-1.5B-Instruct-r
base_model: Vikhrmodels/QVikhr-2.5-1.5B-Instruct-r
language:
- ru
- en
license: apache-2.0
datasets:
- Vikhrmodels/russian_math
- openai/gsm8k
tags:
- mlx
Vikhrmodels/QVikhr-2.5-1.5B-Instruct-r_MLX-4bit
The Model Vikhrmodels/QVikhr-2.5-1.5B-Instruct-r_MLX-4bit was converted to MLX format from Vikhrmodels/QVikhr-2.5-1.5B-Instruct-r using mlx-lm version 0.21.4.
Use with mlx
pip install mlx-lm
from mlx_lm import load, generate
model, tokenizer = load("Vikhrmodels/QVikhr-2.5-1.5B-Instruct-r_MLX-4bit")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)