segformer_rust

This model is a fine-tuned version of nvidia/mit-b3 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1989
  • Mean Iou: 0.4909
  • Mean Accuracy: 0.5770
  • Overall Accuracy: 0.9351
  • Per Category Iou: [0.9330033577422647, 0.43802844257518975, 0.10174998526948427]
  • Per Category Accuracy: [0.964764208993714, 0.619516063444351, 0.14676017920088064]

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Per Category Iou Per Category Accuracy
0.3245 1.0 288 0.2058 0.3737 0.4006 0.9292 [0.928254594835728, 0.19278478772636354, 0.0] [0.9934403780274128, 0.20834926267819698, 0.0]
0.2376 2.0 576 0.2186 0.4440 0.5394 0.9205 [0.9174093139660287, 0.3952780826522951, 0.019450366169241784] [0.9466914641620554, 0.6519016208812702, 0.019680530318053235]
0.2267 3.0 864 0.1989 0.4456 0.5055 0.9349 [0.932781347474167, 0.4035973409203434, 0.0003156374054605271] [0.9714340031497313, 0.5447040039563373, 0.0003156655078774732]
0.2227 4.0 1152 0.1916 0.4707 0.5302 0.9370 [0.9346588332598218, 0.4138838160094419, 0.06341712806343888] [0.9731864476801606, 0.54656085524886, 0.07078191965098726]
0.2144 5.0 1440 0.1896 0.4891 0.5724 0.9328 [0.9302444676641086, 0.43202079299936413, 0.10517087813054486] [0.9610582832573524, 0.6347191782872807, 0.12137743477257919]
0.2003 6.0 1728 0.2024 0.4630 0.5614 0.9260 [0.9229095306993824, 0.428931900333899, 0.037186726485148515] [0.9487448882036036, 0.6966673460182111, 0.03891184433643468]
0.1941 7.0 2016 0.2073 0.4860 0.5888 0.9219 [0.918639874525932, 0.4060024340936176, 0.13340049908214777] [0.9461779703553824, 0.669512151538538, 0.15057649425124547]
0.1867 8.0 2304 0.1807 0.4634 0.5301 0.9372 [0.9349180068188713, 0.43659922555690217, 0.018734234161859927] [0.9689566528873623, 0.602518494621371, 0.018875178573596604]
0.1854 9.0 2592 0.1921 0.4725 0.5473 0.9345 [0.9321974693686552, 0.43270280485825646, 0.052579663560228966] [0.9642507962436797, 0.6216561173996741, 0.05587279489431276]
0.18 10.0 2880 0.1847 0.4771 0.5591 0.9335 [0.9311550048182651, 0.4407180368387474, 0.05928079306817498] [0.9605858689552134, 0.6528219329451048, 0.06379276154708474]
0.1838 11.0 3168 0.1887 0.4652 0.5400 0.9344 [0.9321143595621934, 0.43344353554824266, 0.02996913887506222] [0.9638921692510604, 0.6257803286194064, 0.030457674516485428]
0.1852 12.0 3456 0.1873 0.4783 0.5588 0.9338 [0.931356267339074, 0.43971228563091297, 0.06380926339455255] [0.9613249758102673, 0.6471117095414763, 0.06799758799176032]
0.1682 13.0 3744 0.1778 0.4578 0.5035 0.9411 [0.939396147353813, 0.410371405648735, 0.023504333548772998] [0.981291057821883, 0.5056175933375897, 0.023695148059264176]
0.1793 14.0 4032 0.1728 0.4720 0.5296 0.9402 [0.938163188412165, 0.436672912065328, 0.04117603263361246] [0.974742378495531, 0.5715719389819965, 0.042525809702262676]
0.178 15.0 4320 0.1825 0.4794 0.5492 0.9369 [0.9348434866894885, 0.42443186583904435, 0.07881529998132747] [0.9714614165049668, 0.5650121075899666, 0.11103331889905584]
0.1651 16.0 4608 0.1912 0.4640 0.5322 0.9362 [0.9340976310450665, 0.4306683229566104, 0.02708604107096439] [0.9679043107574059, 0.6011619809118315, 0.02741028826736059]
0.1761 17.0 4896 0.1757 0.4724 0.5310 0.9389 [0.9368263731599995, 0.42525112196356074, 0.055183904634890216] [0.9744989654092739, 0.5559049976770041, 0.06246130062283233]
0.1633 18.0 5184 0.1917 0.4620 0.5384 0.9354 [0.9330768754070563, 0.44480333780621734, 0.00820601828493007] [0.9636645135753821, 0.6433031553142516, 0.008227538173267988]
0.1641 19.0 5472 0.1875 0.5028 0.5812 0.9354 [0.9331706683726091, 0.4415413111697262, 0.133770201971674] [0.9634674000411962, 0.6392245347005364, 0.1408556154060956]
0.1629 20.0 5760 0.1793 0.4675 0.5268 0.9393 [0.9374054652680682, 0.4330992564780264, 0.03193276637035433] [0.973550456833595, 0.5746419640278527, 0.032230257753028166]
0.1562 21.0 6048 0.2019 0.4716 0.5546 0.9325 [0.9300698286146659, 0.43671042563474527, 0.04809297394799092] [0.9592354491418064, 0.6554619381223432, 0.049203349291978456]
0.1626 22.0 6336 0.1970 0.4814 0.5547 0.9367 [0.9344970508696149, 0.4450380854494638, 0.06452712765123607] [0.9658097423660128, 0.6317005392634606, 0.066633751117982]
0.1568 23.0 6624 0.1956 0.4917 0.5775 0.9355 [0.9330854195306507, 0.4390415550387406, 0.10283427594052297] [0.9658042305145758, 0.6119827953416446, 0.15474894474639514]
0.1595 24.0 6912 0.1817 0.4769 0.5411 0.9383 [0.9362300601150796, 0.4346106438489147, 0.05977008091938032] [0.9712496965644727, 0.586809439959973, 0.06537513608016285]
0.1539 25.0 7200 0.1893 0.4825 0.5650 0.9358 [0.933537238237644, 0.4394361715176897, 0.07460055177704666] [0.9667388784050233, 0.6055558721569863, 0.12278174158326487]
0.1521 26.0 7488 0.1933 0.4841 0.5721 0.9355 [0.9332085743268924, 0.44365656488299987, 0.07547064782962047] [0.9657158949896331, 0.6132794230856533, 0.13717285114752506]
0.1468 27.0 7776 0.2049 0.4861 0.5735 0.9327 [0.9304477363857275, 0.43790721804897553, 0.08980648951011608] [0.9595730176196706, 0.6520673697794168, 0.10889650623034679]
0.1534 28.0 8064 0.1950 0.4976 0.5800 0.9355 [0.9333228433994155, 0.4429051769820105, 0.11658642467846855] [0.9637939610275141, 0.636643256405625, 0.13955248343767832]
0.1478 29.0 8352 0.2049 0.4913 0.5841 0.9344 [0.9322490633597582, 0.4375642417642195, 0.10407288263883356] [0.9639606458995019, 0.6190808277013159, 0.169160289279109]
0.1414 30.0 8640 0.1989 0.4909 0.5770 0.9351 [0.9330033577422647, 0.43802844257518975, 0.10174998526948427] [0.964764208993714, 0.619516063444351, 0.14676017920088064]

Framework versions

  • Transformers 4.33.1
  • Pytorch 2.0.1
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
59
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for Ventalik/segformer_rust

Base model

nvidia/mit-b3
Finetuned
(13)
this model