betoNer-biobert / README.md
Vantwoth's picture
betoNer-biobert
fb2a1e9 verified
metadata
library_name: transformers
base_model: dccuchile/bert-base-spanish-wwm-cased
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: betoNer-biobert
    results: []

betoNer-biobert

This model is a fine-tuned version of dccuchile/bert-base-spanish-wwm-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1179
  • Precision: 0.9511
  • Recall: 0.9644
  • F1: 0.9577
  • Accuracy: 0.9773

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 306 0.1159 0.9263 0.9509 0.9384 0.9686
0.3168 2.0 612 0.1014 0.9358 0.9642 0.9498 0.9742
0.3168 3.0 918 0.0959 0.9462 0.9656 0.9558 0.9767
0.0777 4.0 1224 0.1011 0.9451 0.9661 0.9555 0.9767
0.0541 5.0 1530 0.1073 0.9512 0.9643 0.9577 0.9772
0.0541 6.0 1836 0.1083 0.9441 0.9611 0.9525 0.9751
0.0385 7.0 2142 0.1100 0.9515 0.9632 0.9573 0.9776
0.0385 8.0 2448 0.1153 0.9477 0.9658 0.9567 0.9770
0.0325 9.0 2754 0.1161 0.9495 0.9633 0.9564 0.9769
0.0255 10.0 3060 0.1179 0.9511 0.9644 0.9577 0.9773

Framework versions

  • Transformers 4.45.1
  • Pytorch 2.4.0
  • Datasets 3.0.1
  • Tokenizers 0.20.0