Update network.py
Browse files- network.py +43 -38
network.py
CHANGED
@@ -1,19 +1,19 @@
|
|
1 |
-
# cognitive_net/network.py
|
2 |
import torch
|
3 |
import torch.nn as nn
|
4 |
import torch.optim as optim
|
5 |
import math
|
6 |
-
|
|
|
7 |
from .node import CognitiveNode
|
8 |
|
9 |
class DynamicCognitiveNet(nn.Module):
|
10 |
-
"""
|
11 |
def __init__(self, input_size: int, output_size: int):
|
12 |
super().__init__()
|
13 |
self.input_size = input_size
|
14 |
self.output_size = output_size
|
15 |
|
16 |
-
#
|
17 |
self.input_nodes = nn.ModuleList([
|
18 |
CognitiveNode(i, 1) for i in range(input_size)
|
19 |
])
|
@@ -21,31 +21,31 @@ class DynamicCognitiveNet(nn.Module):
|
|
21 |
CognitiveNode(input_size + i, 1) for i in range(output_size)
|
22 |
])
|
23 |
|
24 |
-
#
|
25 |
-
self.connections
|
26 |
self._init_base_connections()
|
27 |
|
28 |
-
#
|
29 |
self.emotional_state = nn.Parameter(torch.tensor(0.0))
|
30 |
self.optimizer = optim.AdamW(self.parameters(), lr=0.001)
|
31 |
self.loss_fn = nn.MSELoss()
|
32 |
|
33 |
def _init_base_connections(self):
|
34 |
-
"""
|
35 |
-
for
|
36 |
-
for
|
37 |
conn_id = f"{in_node.id}->{out_node.id}"
|
38 |
self.connections[conn_id] = nn.Parameter(
|
39 |
torch.randn(1) * 0.1
|
40 |
)
|
41 |
|
42 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
43 |
-
#
|
44 |
activations = {}
|
45 |
for i, node in enumerate(self.input_nodes):
|
46 |
activations[node.id] = node(x[i].unsqueeze(0))
|
47 |
|
48 |
-
#
|
49 |
outputs = []
|
50 |
for out_node in self.output_nodes:
|
51 |
integrated = []
|
@@ -58,58 +58,63 @@ class DynamicCognitiveNet(nn.Module):
|
|
58 |
combined = sum(integrated) / math.sqrt(len(integrated))
|
59 |
outputs.append(out_node(combined))
|
60 |
|
61 |
-
return torch.
|
62 |
|
63 |
def structural_update(self, global_reward: float):
|
64 |
-
"""
|
65 |
-
#
|
66 |
-
for conn_id
|
67 |
-
|
68 |
-
new_weight = weight + 0.1 * global_reward
|
69 |
-
else:
|
70 |
-
new_weight = weight * 0.95
|
71 |
self.connections[conn_id].data = new_weight.clamp(-1, 1)
|
72 |
|
73 |
-
#
|
74 |
if global_reward < -0.5:
|
75 |
-
new_conn = self.
|
76 |
-
if new_conn not in self.connections:
|
77 |
-
self.connections[new_conn] = nn.Parameter(
|
78 |
-
torch.randn(1) * 0.1
|
79 |
-
)
|
80 |
|
81 |
-
def
|
82 |
-
"""
|
83 |
input_act = {n.id: np.mean(n.recent_activations)
|
84 |
for n in self.input_nodes if n.recent_activations}
|
85 |
output_act = {n.id: np.mean(n.recent_activations)
|
86 |
for n in self.output_nodes if n.recent_activations}
|
87 |
|
88 |
if not input_act or not output_act:
|
89 |
-
return
|
90 |
|
91 |
-
src = min(input_act, key=
|
92 |
-
tgt = min(output_act, key=
|
93 |
return f"{src}->{tgt}"
|
94 |
|
95 |
def train_step(self, x: torch.Tensor, y: torch.Tensor) -> float:
|
|
|
96 |
self.optimizer.zero_grad()
|
97 |
-
pred = self(x)
|
98 |
-
loss = self.loss_fn(pred, y)
|
99 |
|
100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
reg_loss = sum(p.abs().mean() for p in self.connections.values())
|
102 |
total_loss = loss + 0.01 * reg_loss
|
103 |
|
104 |
-
|
105 |
-
|
|
|
|
|
|
|
|
|
106 |
|
107 |
-
#
|
108 |
self.emotional_state.data = torch.sigmoid(
|
109 |
self.emotional_state + (0.5 - loss.item()) * 0.1
|
110 |
)
|
111 |
|
112 |
-
#
|
113 |
self.structural_update(0.5 - loss.item())
|
114 |
|
115 |
return total_loss.item()
|
|
|
|
|
1 |
import torch
|
2 |
import torch.nn as nn
|
3 |
import torch.optim as optim
|
4 |
import math
|
5 |
+
import numpy as np
|
6 |
+
from typing import Dict, Optional
|
7 |
from .node import CognitiveNode
|
8 |
|
9 |
class DynamicCognitiveNet(nn.Module):
|
10 |
+
"""Jaringan dengan manajemen koneksi yang robust"""
|
11 |
def __init__(self, input_size: int, output_size: int):
|
12 |
super().__init__()
|
13 |
self.input_size = input_size
|
14 |
self.output_size = output_size
|
15 |
|
16 |
+
# Node input/output
|
17 |
self.input_nodes = nn.ModuleList([
|
18 |
CognitiveNode(i, 1) for i in range(input_size)
|
19 |
])
|
|
|
21 |
CognitiveNode(input_size + i, 1) for i in range(output_size)
|
22 |
])
|
23 |
|
24 |
+
# Manajemen koneksi
|
25 |
+
self.connections = nn.ParameterDict()
|
26 |
self._init_base_connections()
|
27 |
|
28 |
+
# Konteks pembelajaran
|
29 |
self.emotional_state = nn.Parameter(torch.tensor(0.0))
|
30 |
self.optimizer = optim.AdamW(self.parameters(), lr=0.001)
|
31 |
self.loss_fn = nn.MSELoss()
|
32 |
|
33 |
def _init_base_connections(self):
|
34 |
+
"""Inisialisasi koneksi input-output"""
|
35 |
+
for in_node in self.input_nodes:
|
36 |
+
for out_node in self.output_nodes:
|
37 |
conn_id = f"{in_node.id}->{out_node.id}"
|
38 |
self.connections[conn_id] = nn.Parameter(
|
39 |
torch.randn(1) * 0.1
|
40 |
)
|
41 |
|
42 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
43 |
+
# Pemrosesan input
|
44 |
activations = {}
|
45 |
for i, node in enumerate(self.input_nodes):
|
46 |
activations[node.id] = node(x[i].unsqueeze(0))
|
47 |
|
48 |
+
# Integrasi output
|
49 |
outputs = []
|
50 |
for out_node in self.output_nodes:
|
51 |
integrated = []
|
|
|
58 |
combined = sum(integrated) / math.sqrt(len(integrated))
|
59 |
outputs.append(out_node(combined))
|
60 |
|
61 |
+
return torch.stack(outputs).squeeze()
|
62 |
|
63 |
def structural_update(self, global_reward: float):
|
64 |
+
"""Update struktur dengan validasi koneksi"""
|
65 |
+
# Adaptasi kekuatan koneksi
|
66 |
+
for conn_id in list(self.connections.keys()):
|
67 |
+
new_weight = self.connections[conn_id] + 0.1 * global_reward
|
|
|
|
|
|
|
68 |
self.connections[conn_id].data = new_weight.clamp(-1, 1)
|
69 |
|
70 |
+
# Pembuatan koneksi baru
|
71 |
if global_reward < -0.5:
|
72 |
+
new_conn = self._find_underutilized_connection()
|
73 |
+
if new_conn and new_conn not in self.connections:
|
74 |
+
self.connections[new_conn] = nn.Parameter(torch.randn(1) * 0.1)
|
|
|
|
|
75 |
|
76 |
+
def _find_underutilized_connection(self) -> Optional[str]:
|
77 |
+
"""Mencari koneksi input-output yang underutilized"""
|
78 |
input_act = {n.id: np.mean(n.recent_activations)
|
79 |
for n in self.input_nodes if n.recent_activations}
|
80 |
output_act = {n.id: np.mean(n.recent_activations)
|
81 |
for n in self.output_nodes if n.recent_activations}
|
82 |
|
83 |
if not input_act or not output_act:
|
84 |
+
return None
|
85 |
|
86 |
+
src = min(input_act, key=lambda k: input_act[k])
|
87 |
+
tgt = min(output_act, key=lambda k: output_act[k])
|
88 |
return f"{src}->{tgt}"
|
89 |
|
90 |
def train_step(self, x: torch.Tensor, y: torch.Tensor) -> float:
|
91 |
+
"""Training step dengan error handling"""
|
92 |
self.optimizer.zero_grad()
|
|
|
|
|
93 |
|
94 |
+
try:
|
95 |
+
pred = self(x)
|
96 |
+
loss = self.loss_fn(pred, y)
|
97 |
+
except RuntimeError as e:
|
98 |
+
print(f"Error selama forward pass: {e}")
|
99 |
+
return float('nan')
|
100 |
+
|
101 |
+
# Regularisasi struktural
|
102 |
reg_loss = sum(p.abs().mean() for p in self.connections.values())
|
103 |
total_loss = loss + 0.01 * reg_loss
|
104 |
|
105 |
+
try:
|
106 |
+
total_loss.backward()
|
107 |
+
self.optimizer.step()
|
108 |
+
except RuntimeError as e:
|
109 |
+
print(f"Error selama backpropagation: {e}")
|
110 |
+
return float('nan')
|
111 |
|
112 |
+
# Update state emosional
|
113 |
self.emotional_state.data = torch.sigmoid(
|
114 |
self.emotional_state + (0.5 - loss.item()) * 0.1
|
115 |
)
|
116 |
|
117 |
+
# Update struktur
|
118 |
self.structural_update(0.5 - loss.item())
|
119 |
|
120 |
return total_loss.item()
|