Update memory.py
Browse files
memory.py
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
-
# cognitive_net/memory.py
|
2 |
import torch
|
3 |
import torch.nn as nn
|
4 |
import torch.nn.functional as F
|
@@ -6,24 +5,20 @@ from collections import deque
|
|
6 |
from typing import Deque, Dict, Any
|
7 |
|
8 |
class CognitiveMemory(nn.Module):
|
9 |
-
"""
|
10 |
def __init__(self, context_size: int, capacity: int = 100):
|
11 |
super().__init__()
|
12 |
self.context_size = context_size
|
13 |
self.capacity = capacity
|
14 |
self.memory_queue: Deque[Dict[str, Any]] = deque(maxlen=capacity)
|
15 |
|
16 |
-
#
|
17 |
-
self.key_proj = nn.Linear(context_size,
|
18 |
-
self.value_proj = nn.Linear(context_size,
|
19 |
self.importance_decay = nn.Parameter(torch.tensor(0.95))
|
20 |
-
|
21 |
-
# Consolidation parameters
|
22 |
-
self.consolidation_threshold = 0.7
|
23 |
-
self.age_decay = 0.1
|
24 |
|
25 |
def add_memory(self, context: torch.Tensor, activation: float):
|
26 |
-
"""
|
27 |
importance = torch.sigmoid(torch.tensor(activation * 0.5 + 0.2))
|
28 |
self.memory_queue.append({
|
29 |
'context': context.detach().clone(),
|
@@ -32,24 +27,21 @@ class CognitiveMemory(nn.Module):
|
|
32 |
})
|
33 |
|
34 |
def consolidate_memories(self):
|
35 |
-
"""
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
if mem['importance'] > 0.2:
|
41 |
-
new_queue.append(mem)
|
42 |
-
self.memory_queue = new_queue
|
43 |
|
44 |
def retrieve(self, query: torch.Tensor) -> torch.Tensor:
|
45 |
-
"""
|
46 |
if not self.memory_queue:
|
47 |
-
return torch.zeros(
|
48 |
|
49 |
contexts = torch.stack([m['context'] for m in self.memory_queue])
|
50 |
keys = self.key_proj(contexts)
|
51 |
values = self.value_proj(contexts)
|
52 |
-
query_proj = self.key_proj(query
|
53 |
|
54 |
-
scores = F.softmax(keys @ query_proj
|
55 |
-
return (scores * values).sum(dim=0)
|
|
|
|
|
1 |
import torch
|
2 |
import torch.nn as nn
|
3 |
import torch.nn.functional as F
|
|
|
5 |
from typing import Deque, Dict, Any
|
6 |
|
7 |
class CognitiveMemory(nn.Module):
|
8 |
+
"""Memory system dengan dimensi konsisten"""
|
9 |
def __init__(self, context_size: int, capacity: int = 100):
|
10 |
super().__init__()
|
11 |
self.context_size = context_size
|
12 |
self.capacity = capacity
|
13 |
self.memory_queue: Deque[Dict[str, Any]] = deque(maxlen=capacity)
|
14 |
|
15 |
+
# Proyeksi mempertahankan dimensi asli
|
16 |
+
self.key_proj = nn.Linear(context_size, context_size)
|
17 |
+
self.value_proj = nn.Linear(context_size, context_size)
|
18 |
self.importance_decay = nn.Parameter(torch.tensor(0.95))
|
|
|
|
|
|
|
|
|
19 |
|
20 |
def add_memory(self, context: torch.Tensor, activation: float):
|
21 |
+
"""Menyimpan memori dengan dimensi yang sesuai"""
|
22 |
importance = torch.sigmoid(torch.tensor(activation * 0.5 + 0.2))
|
23 |
self.memory_queue.append({
|
24 |
'context': context.detach().clone(),
|
|
|
27 |
})
|
28 |
|
29 |
def consolidate_memories(self):
|
30 |
+
"""Konsolidasi memori dengan manajemen dimensi"""
|
31 |
+
self.memory_queue = deque(
|
32 |
+
[m for m in self.memory_queue if m['importance'] > 0.2],
|
33 |
+
maxlen=self.capacity
|
34 |
+
)
|
|
|
|
|
|
|
35 |
|
36 |
def retrieve(self, query: torch.Tensor) -> torch.Tensor:
|
37 |
+
"""Retrieval dengan penanganan dimensi yang aman"""
|
38 |
if not self.memory_queue:
|
39 |
+
return torch.zeros(self.context_size, device=query.device)
|
40 |
|
41 |
contexts = torch.stack([m['context'] for m in self.memory_queue])
|
42 |
keys = self.key_proj(contexts)
|
43 |
values = self.value_proj(contexts)
|
44 |
+
query_proj = self.key_proj(query)
|
45 |
|
46 |
+
scores = F.softmax(keys @ query_proj, dim=0)
|
47 |
+
return (scores.unsqueeze(1) * values).sum(dim=0)
|