cognitive_net / memory.py
vincentiusyoshuac's picture
Update memory.py
c9387f0 verified
raw
history blame
1.87 kB
import torch
import torch.nn as nn
import torch.nn.functional as F
from collections import deque
from typing import Deque, Dict, Any
class CognitiveMemory(nn.Module):
"""Memory system dengan dimensi konsisten"""
def __init__(self, context_size: int, capacity: int = 100):
super().__init__()
self.context_size = context_size
self.capacity = capacity
self.memory_queue: Deque[Dict[str, Any]] = deque(maxlen=capacity)
# Proyeksi mempertahankan dimensi asli
self.key_proj = nn.Linear(context_size, context_size)
self.value_proj = nn.Linear(context_size, context_size)
self.importance_decay = nn.Parameter(torch.tensor(0.95))
def add_memory(self, context: torch.Tensor, activation: float):
"""Menyimpan memori dengan dimensi yang sesuai"""
importance = torch.sigmoid(torch.tensor(activation * 0.5 + 0.2))
self.memory_queue.append({
'context': context.detach().clone(),
'importance': importance,
'age': torch.tensor(0.0)
})
def consolidate_memories(self):
"""Konsolidasi memori dengan manajemen dimensi"""
self.memory_queue = deque(
[m for m in self.memory_queue if m['importance'] > 0.2],
maxlen=self.capacity
)
def retrieve(self, query: torch.Tensor) -> torch.Tensor:
"""Retrieval dengan penanganan dimensi yang aman"""
if not self.memory_queue:
return torch.zeros(self.context_size, device=query.device)
contexts = torch.stack([m['context'] for m in self.memory_queue])
keys = self.key_proj(contexts)
values = self.value_proj(contexts)
query_proj = self.key_proj(query)
scores = F.softmax(keys @ query_proj, dim=0)
return (scores.unsqueeze(1) * values).sum(dim=0)