VARGPT: Unified Understanding and Generation in a Visual Autoregressive Multimodal Large Language Model
VARGPT (7B+2B) modeling understanding and generation as two distinct paradigms within a unified model: predicting the next token for visual understanding and predicting the next scale for visual generation.
We provide the simple generation process for using our model. For more details, you could refer to Github: VARGPT-v1.
Multimodal Understanding
Inference demo for Multimodal Understanding. You can execute the following code:
# Or execute the following code
import requests
from PIL import Image
import torch
from transformers import AutoProcessor, AutoTokenizer
from vargpt_llava.modeling_vargpt_llava import VARGPTLlavaForConditionalGeneration
from vargpt_llava.prepare_vargpt_llava import prepare_vargpt_llava
from vargpt_llava.processing_vargpt_llava import VARGPTLlavaProcessor
from patching_utils.patching import patching
model_id = "VARGPT_LLaVA-v1"
prepare_vargpt_llava(model_id)
model = VARGPTLlavaForConditionalGeneration.from_pretrained(
model_id,
torch_dtype=torch.float32,
low_cpu_mem_usage=True,
).to(0)
patching(model)
tokenizer = AutoTokenizer.from_pretrained(model_id)
processor = VARGPTLlavaProcessor.from_pretrained(model_id)
# Define a chat history and use `apply_chat_template` to get correctly formatted prompt
# Each value in "content" has to be a list of dicts with types ("text", "image")
conversation = [
{
"role": "user",
"content": [
{"type": "text", "text": "Please explain the meme in detail."},
{"type": "image"},
],
},
]
prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
image_file = "./assets/llava_bench_demo.png"
print(prompt)
raw_image = Image.open(image_file)
inputs = processor(images=raw_image, text=prompt, return_tensors='pt').to(0, torch.float32)
output = model.generate(
**inputs,
max_new_tokens=2048,
do_sample=False)
print(processor.decode(output[0], skip_special_tokens=True))
Multimodal Generation
Inference demo for Text-to-Image Generation. You can execute the following code:
import requests
from PIL import Image
import torch
from transformers import AutoProcessor, AutoTokenizer
from vargpt_llava.modeling_vargpt_llava import VARGPTLlavaForConditionalGeneration
from vargpt_llava.prepare_vargpt_llava import prepare_vargpt_llava
from vargpt_llava.processing_vargpt_llava import VARGPTLlavaProcessor
from patching_utils.patching import patching
model_id = "VARGPT_LLaVA-v1"
prepare_vargpt_llava(model_id)
model = VARGPTLlavaForConditionalGeneration.from_pretrained(
model_id,
torch_dtype=torch.float32,
low_cpu_mem_usage=True,
).to(0)
patching(model)
tokenizer = AutoTokenizer.from_pretrained(model_id)
processor = VARGPTLlavaProcessor.from_pretrained(model_id)
# some instruction examples:
# Please design a drawing of a butterfly on a flower.
# Please create a painting of a black weasel is standing in the grass.
# Can you generate a rendered photo of a rabbit sitting in the grass.
# I need a designed photo of a lighthouse is seen in the distance.
# Please create a rendered drawing of an old photo of an aircraft carrier in the water.
# Please produce a designed photo of a squirrel is standing in the snow.
conversation = [
{
"role": "user",
"content": [
{"type": "text", "text": "Please design a drawing of a butterfly on a flower."},
],
},
]
prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
print(prompt)
inputs = processor(text=prompt, return_tensors='pt').to(0, torch.float32)
model._IMAGE_GEN_PATH = "output.png"
output = model.generate(
**inputs,
max_new_tokens=2048,
do_sample=False)
print(processor.decode(output[0], skip_special_tokens=True))
- Downloads last month
- 26
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the HF Inference API does not support transformers models with pipeline type any-to-any