TaiGary's picture
Add files using upload-large-folder tool
97320f9 verified
|
raw
history blame
2.19 kB
metadata
library_name: peft
license: other
base_model: Qwen/Qwen2.5-32B-Instruct
tags:
  - llama-factory
  - lora
  - generated_from_trainer
model-index:
  - name: MATH_training_QwQ_32B_Preview
    results: []

MATH_training_QwQ_32B_Preview

This model is a fine-tuned version of Qwen/Qwen2.5-32B-Instruct on the MATH_training_Qwen_QwQ_32B_Preview dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1193

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • total_train_batch_size: 4
  • total_eval_batch_size: 4
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 2.0

Training results

Training Loss Epoch Step Validation Loss
0.2322 0.1564 200 0.2143
0.1419 0.3127 400 0.1674
0.1137 0.4691 600 0.1510
0.1457 0.6255 800 0.1406
0.0953 0.7819 1000 0.1333
0.1201 0.9382 1200 0.1268
0.0899 1.0946 1400 0.1289
0.0548 1.2510 1600 0.1269
0.0323 1.4073 1800 0.1240
0.0414 1.5637 2000 0.1207
0.0375 1.7201 2200 0.1202
0.0512 1.8765 2400 0.1201

Framework versions

  • PEFT 0.12.0
  • Transformers 4.46.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.20.3