Triangle104's picture
Update README.md
4f274c6 verified
---
license: apache-2.0
language:
- en
- zh
base_model: prithivMLmods/Primal-Opus-14B-Optimus-v2
pipeline_tag: text-generation
library_name: transformers
tags:
- text-generation-inference
- trl
- sft
- llama-cpp
- gguf-my-repo
model-index:
- name: Primal-Opus-14B-Optimus-v2
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: wis-k/instruction-following-eval
split: train
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 64.04
name: averaged accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FPrimal-Opus-14B-Optimus-v2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: SaylorTwift/bbh
split: test
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 50.18
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FPrimal-Opus-14B-Optimus-v2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: lighteval/MATH-Hard
split: test
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 42.07
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FPrimal-Opus-14B-Optimus-v2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
split: train
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 18.9
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FPrimal-Opus-14B-Optimus-v2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 21.15
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FPrimal-Opus-14B-Optimus-v2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 49.14
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FPrimal-Opus-14B-Optimus-v2
name: Open LLM Leaderboard
---
# Triangle104/Primal-Opus-14B-Optimus-v2-Q6_K-GGUF
This model was converted to GGUF format from [`prithivMLmods/Primal-Opus-14B-Optimus-v2`](https://huggingface.co/prithivMLmods/Primal-Opus-14B-Optimus-v2) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/prithivMLmods/Primal-Opus-14B-Optimus-v2) for more details on the model.
---
Primal-Opus-14B-Optimus-v2 is based on the Qwen 2.5 14B modality
architecture, designed to enhance the reasoning capabilities of
14B-parameter models. It has been fine-tuned on a synthetic dataset based on DeepSeek R1,
further optimizing its chain-of-thought (CoT) reasoning and logical
problem-solving abilities. The model demonstrates significant
improvements in context understanding, structured data processing, and
long-context comprehension, making it ideal for complex reasoning tasks,
instruction-following, and text generation.
Key Improvements
-
Enhanced Reasoning and Logic: Improved multi-step logical deduction, mathematical reasoning, and problem-solving accuracy.
Fine-Tuned Instruction Following: Optimized for precise responses, structured outputs (e.g., JSON), and generating long texts (8K+ tokens).
Greater Adaptability: Better role-playing capabilities and resilience to diverse system prompts.
Long-Context Support: Handles up to 128K tokens and generates up to 8K tokens per output.
Multilingual Proficiency: Supports over 29 languages, including Chinese, English, French, Spanish, Portuguese, German, and more.
Quickstart with Transformers
-
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "prithivMLmods/Primal-Opus-14B-Optimus-v2"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto",
trust_remote_code=True
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "Give me a short introduction to large language models."
messages = [
{"role": "system", "content": "You are an advanced AI assistant with expert-level reasoning and knowledge."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=512
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
Intended Use
-
Advanced Logical Reasoning: Designed for logical deduction, multi-step problem-solving, and knowledge-based tasks.
Mathematical & Scientific Problem-Solving: Enhanced capabilities for calculations, theorem proving, and scientific queries.
Code Generation & Debugging: Generates and optimizes code across multiple programming languages.
Structured Data Analysis: Processes tables, JSON, and structured outputs, making it ideal for data-centric tasks.
Multilingual Applications: High proficiency in over 29 languages, enabling global-scale applications.
Extended Content Generation: Supports detailed document writing, research reports, and instructional guides.
Limitations
-
High Computational Requirements: Due to its 14B parameters and 128K context support, it requires powerful GPUs or TPUs for efficient inference.
Language-Specific Variability: Performance may vary across supported languages, especially for low-resource languages.
Potential Error Accumulation: Long-text generation can sometimes introduce inconsistencies over extended outputs.
Limited Real-World Awareness: Knowledge is restricted to training data and may not reflect recent world events.
Prompt Sensitivity: Outputs can depend on the specificity and clarity of the input prompt.
---
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo Triangle104/Primal-Opus-14B-Optimus-v2-Q6_K-GGUF --hf-file primal-opus-14b-optimus-v2-q6_k.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo Triangle104/Primal-Opus-14B-Optimus-v2-Q6_K-GGUF --hf-file primal-opus-14b-optimus-v2-q6_k.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Triangle104/Primal-Opus-14B-Optimus-v2-Q6_K-GGUF --hf-file primal-opus-14b-optimus-v2-q6_k.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo Triangle104/Primal-Opus-14B-Optimus-v2-Q6_K-GGUF --hf-file primal-opus-14b-optimus-v2-q6_k.gguf -c 2048
```