Add pipeline tag and library name

#4
by nielsr HF staff - opened
Files changed (1) hide show
  1. README.md +11 -7
README.md CHANGED
@@ -1,7 +1,4 @@
1
  ---
2
- license: other
3
- license_name: seallm
4
- license_link: https://huggingface.co/SeaLLMs/SeaLLM-13B-Chat/blob/main/LICENSE
5
  language:
6
  - en
7
  - zh
@@ -28,12 +25,16 @@ language:
28
  - fa
29
  - tl
30
  - my
 
 
 
 
 
31
  tags:
32
  - multilingual
33
  - babel
34
  ---
35
 
36
-
37
  # *Babel*: Open Multilingual Large Language Models Serving Over 90% of Global Speakers
38
 
39
  <p align="center">
@@ -108,8 +109,10 @@ messages = [
108
 
109
  text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
110
  model_inputs = tokenizer([text], return_tensors="pt").to(device)
111
- print(f"Formatted text:\n {text}")
112
- print(f"Model input:\n {model_inputs}")
 
 
113
 
114
  generated_ids = model.generate(model_inputs.input_ids, max_new_tokens=512, do_sample=True, eos_token_id=tokenizer.eos_token_id)
115
  generated_ids = [
@@ -117,7 +120,8 @@ generated_ids = [
117
  ]
118
  response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
119
 
120
- print(f"Response:\n {response[0]}")
 
121
  ```
122
 
123
  ### Performance of 10B-Size Instruct Models vs. Babel-9B-Chat
 
1
  ---
 
 
 
2
  language:
3
  - en
4
  - zh
 
25
  - fa
26
  - tl
27
  - my
28
+ license: other
29
+ license_name: seallm
30
+ license_link: https://huggingface.co/SeaLLMs/SeaLLM-13B-Chat/blob/main/LICENSE
31
+ library_name: transformers
32
+ pipeline_tag: text-generation
33
  tags:
34
  - multilingual
35
  - babel
36
  ---
37
 
 
38
  # *Babel*: Open Multilingual Large Language Models Serving Over 90% of Global Speakers
39
 
40
  <p align="center">
 
109
 
110
  text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
111
  model_inputs = tokenizer([text], return_tensors="pt").to(device)
112
+ print(f"Formatted text:
113
+ {text}")
114
+ print(f"Model input:
115
+ {model_inputs}")
116
 
117
  generated_ids = model.generate(model_inputs.input_ids, max_new_tokens=512, do_sample=True, eos_token_id=tokenizer.eos_token_id)
118
  generated_ids = [
 
120
  ]
121
  response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
122
 
123
+ print(f"Response:
124
+ {response[0]}")
125
  ```
126
 
127
  ### Performance of 10B-Size Instruct Models vs. Babel-9B-Chat