|
--- |
|
license: mit |
|
base_model: pdelobelle/robbert-v2-dutch-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- recall |
|
- accuracy |
|
model-index: |
|
- name: robbert1010_lrate10b16 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# robbert1010_lrate10b16 |
|
|
|
This model is a fine-tuned version of [pdelobelle/robbert-v2-dutch-base](https://huggingface.co/pdelobelle/robbert-v2-dutch-base) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.6021 |
|
- Precisions: 0.8323 |
|
- Recall: 0.7951 |
|
- F-measure: 0.8088 |
|
- Accuracy: 0.9164 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 14 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precisions | Recall | F-measure | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:----------:|:------:|:---------:|:--------:| |
|
| 0.6104 | 1.0 | 236 | 0.4304 | 0.8532 | 0.6700 | 0.6852 | 0.8707 | |
|
| 0.32 | 2.0 | 472 | 0.3520 | 0.7761 | 0.7551 | 0.7413 | 0.8916 | |
|
| 0.1989 | 3.0 | 708 | 0.3686 | 0.7500 | 0.7591 | 0.7465 | 0.9010 | |
|
| 0.1331 | 4.0 | 944 | 0.4045 | 0.8289 | 0.7666 | 0.7835 | 0.9090 | |
|
| 0.0784 | 5.0 | 1180 | 0.4307 | 0.8052 | 0.7759 | 0.7890 | 0.9092 | |
|
| 0.0682 | 6.0 | 1416 | 0.4696 | 0.8101 | 0.7658 | 0.7770 | 0.9059 | |
|
| 0.04 | 7.0 | 1652 | 0.5078 | 0.8450 | 0.7642 | 0.7820 | 0.9096 | |
|
| 0.0256 | 8.0 | 1888 | 0.5718 | 0.8007 | 0.7830 | 0.7906 | 0.9058 | |
|
| 0.0219 | 9.0 | 2124 | 0.5508 | 0.8078 | 0.7987 | 0.8000 | 0.9093 | |
|
| 0.0162 | 10.0 | 2360 | 0.5786 | 0.8256 | 0.7791 | 0.7946 | 0.9141 | |
|
| 0.0117 | 11.0 | 2596 | 0.5979 | 0.8360 | 0.7912 | 0.8046 | 0.9168 | |
|
| 0.011 | 12.0 | 2832 | 0.6021 | 0.8323 | 0.7951 | 0.8088 | 0.9164 | |
|
| 0.0079 | 13.0 | 3068 | 0.6115 | 0.8337 | 0.7956 | 0.8088 | 0.9166 | |
|
| 0.0064 | 14.0 | 3304 | 0.6100 | 0.8305 | 0.7932 | 0.8064 | 0.9164 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.34.0 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.14.1 |
|
|