|
--- |
|
license: mit |
|
base_model: pdelobelle/robbert-v2-dutch-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- recall |
|
- accuracy |
|
model-index: |
|
- name: robbert0210_lrate5b32 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# robbert0210_lrate5b32 |
|
|
|
This model is a fine-tuned version of [pdelobelle/robbert-v2-dutch-base](https://huggingface.co/pdelobelle/robbert-v2-dutch-base) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3497 |
|
- Precisions: 0.8168 |
|
- Recall: 0.7629 |
|
- F-measure: 0.7745 |
|
- Accuracy: 0.9044 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 8 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precisions | Recall | F-measure | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:----------:|:------:|:---------:|:--------:| |
|
| No log | 1.0 | 118 | 0.4100 | 0.8801 | 0.6728 | 0.6931 | 0.8747 | |
|
| No log | 2.0 | 236 | 0.3638 | 0.7841 | 0.7186 | 0.7176 | 0.8871 | |
|
| No log | 3.0 | 354 | 0.3533 | 0.8013 | 0.7568 | 0.7535 | 0.8967 | |
|
| No log | 4.0 | 472 | 0.3497 | 0.8168 | 0.7629 | 0.7745 | 0.9044 | |
|
| 0.3409 | 5.0 | 590 | 0.3781 | 0.7928 | 0.7789 | 0.7814 | 0.9046 | |
|
| 0.3409 | 6.0 | 708 | 0.4072 | 0.8013 | 0.7836 | 0.7884 | 0.9073 | |
|
| 0.3409 | 7.0 | 826 | 0.4193 | 0.8047 | 0.8026 | 0.8012 | 0.9082 | |
|
| 0.3409 | 8.0 | 944 | 0.4197 | 0.8121 | 0.8021 | 0.8049 | 0.9103 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.33.3 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.13.3 |
|
|