Improve model card

#1
by nielsr HF staff - opened
Files changed (1) hide show
  1. README.md +76 -171
README.md CHANGED
@@ -1,199 +1,104 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
 
 
11
 
12
  ## Model Details
13
 
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
 
 
 
 
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
 
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
 
52
- ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
 
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
  ## How to Get Started with the Model
71
 
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
 
175
  **BibTeX:**
176
 
177
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
178
 
179
  **APA:**
180
 
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ pipeline_tag: text-generation
4
+ license: apache-2.0
5
+ tags: [long-sequence-generation, ultra-long-sequence, lossless-acceleration]
6
  ---
7
 
8
+ # Model Card for TokenSwift Models
 
 
 
9
 
10
+ TokenSwift is a novel framework designed to substantially accelerate the generation process of ultra-long sequences (up to 100K tokens) while maintaining the target model's inherent quality. This model significantly reduces generation time, offering lossless acceleration for long sequences. It's based on the research presented in [From Hours to Minutes: Lossless Acceleration of Ultra Long Sequence Generation up to 100K Tokens](https://hf.co/papers/2502.18890).
11
 
12
  ## Model Details
13
 
14
+ This model is a framework for accelerating ultra-long sequence generation. It is designed to be compatible with various Large Language Models (LLMs) via the HuggingFace Transformers library.
 
 
15
 
16
+ - **Developed by:** BIGAI-NLCO
17
+ - **Model type:** Long Sequence Generation Accelerator
18
+ - **Language(s) (NLP):** Multiple (supports models trained on various languages)
19
+ - **License:** Apache-2.0
20
+ - **Finetuned from model [optional]:** (Model-specific; varies based on the base model used)
21
 
 
 
 
 
 
 
 
22
 
23
+ ### Model Sources
24
 
25
+ - **Repository:** https://github.com/bigai-nlco/TokenSwift
26
+ - **Paper:** https://arxiv.org/abs/2502.18890
27
 
 
 
 
28
 
29
  ## Uses
30
 
31
+ TokenSwift is designed to accelerate the generation of ultra-long sequences (up to 100K tokens) for various LLMs. Its key benefit is lossless acceleration, meaning that the generated text quality is identical to that of the underlying LLM.
 
 
 
 
 
 
 
 
 
 
 
 
32
 
 
33
 
34
+ ### Direct Use
 
 
 
 
 
 
 
 
 
 
 
 
35
 
36
+ TokenSwift acts as a wrapper around existing LLMs, speeding up their generation process. It's designed to be easily integrated into existing workflows. See examples below.
37
 
38
  ## How to Get Started with the Model
39
 
40
+ 1. **Install:** Follow the installation instructions in the [GitHub repository](https://github.com/bigai-nlco/TokenSwift).
41
+ 2. **Download:** Choose a pre-trained TokenSwift model from the Hugging Face Model Hub ([link to models on HuggingFace]).
42
+ 3. **Inference:** Use the provided inference script in the repository, adapting the parameters to your needs. See the [GitHub README](https://github.com/bigai-nlco/TokenSwift) for detailed instructions and examples.
43
+
44
+ **Example using transformers:**
45
+ ```python
46
+ from transformers import AutoModelForCausalLM, AutoTokenizer
47
+ import torch
48
+
49
+ model_path = "TokenSwift/TokenSwift-Llama-3.1-8B" # Replace with the actual model path
50
+ tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
51
+ model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.bfloat16, device_map="auto", trust_remote_code=True)
52
+
53
+ prompt = "The key to success is"
54
+ input_ids = tokenizer(prompt, return_tensors="pt").input_ids.cuda()
55
+
56
+ generated_ids = model.generate(
57
+ input_ids,
58
+ max_new_tokens=100,
59
+ # Add other generation parameters as needed
60
+ )
61
+ generated_text = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
62
+ print(generated_text)
63
+ ```
64
+
65
+ **Example using TokenSwift command line:**
66
+ ```bash
67
+ torchrun --master-port 1111 --nproc_per_node=1 main.py \
68
+ --model_type llama3_1 \
69
+ --ckpt_path your_checkpoint_path \
70
+ --prefill_len 4096 \
71
+ --retrival_max_budget 4096 \
72
+ --gen_len 102400 \
73
+ --gamma 4 \
74
+ --min_p 0.1 \
75
+ --temperature 1.0 \
76
+ --tree_decoding \
77
+ --ngram_topk 20 \
78
+ --penalty 1.2 \
79
+ --penalty_length 1024 \
80
+ --prompt_id 0
81
+
82
+ <NOTE: Modify the data and model path>
83
+ ```
84
+
85
+
86
+ ## Citation
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87
 
88
  **BibTeX:**
89
 
90
+ ```bibtex
91
+ @misc{tokenswift,
92
+ title={From Hours to Minutes: Lossless Acceleration of Ultra Long Sequence Generation up to 100K Tokens},
93
+ author={Tong Wu and Junzhe Shen and Zixia Jia and Yuxuan Wang and Zilong Zheng},
94
+ year={2025},
95
+ eprint={2502.18890},
96
+ archivePrefix={arXiv},
97
+ primaryClass={cs.CL},
98
+ url={https://arxiv.org/abs/2502.18890},
99
+ }
100
+ ```
101
 
102
  **APA:**
103
 
104
+ Wu, T., Shen, J., Jia, Z., Wang, Y., & Zheng, Z. (2025). From Hours to Minutes: Lossless Acceleration of Ultra Long Sequence Generation up to 100K Tokens. *arXiv preprint arXiv:2502.18890*.