Improve model card
#1
by
nielsr
HF staff
- opened
README.md
CHANGED
@@ -1,199 +1,104 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
# Model Card for
|
7 |
-
|
8 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
-
|
10 |
|
|
|
11 |
|
12 |
## Model Details
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
<!-- Provide a longer summary of what this model is. -->
|
17 |
|
18 |
-
|
|
|
|
|
|
|
|
|
19 |
|
20 |
-
- **Developed by:** [More Information Needed]
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
|
28 |
-
### Model Sources
|
29 |
|
30 |
-
|
|
|
31 |
|
32 |
-
- **Repository:** [More Information Needed]
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
|
36 |
## Uses
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
### Direct Use
|
41 |
-
|
42 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
-
|
44 |
-
[More Information Needed]
|
45 |
-
|
46 |
-
### Downstream Use [optional]
|
47 |
-
|
48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
-
|
50 |
-
[More Information Needed]
|
51 |
|
52 |
-
### Out-of-Scope Use
|
53 |
|
54 |
-
|
55 |
-
|
56 |
-
[More Information Needed]
|
57 |
-
|
58 |
-
## Bias, Risks, and Limitations
|
59 |
-
|
60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
-
|
62 |
-
[More Information Needed]
|
63 |
-
|
64 |
-
### Recommendations
|
65 |
-
|
66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
|
68 |
-
|
69 |
|
70 |
## How to Get Started with the Model
|
71 |
|
72 |
-
|
73 |
-
|
74 |
-
[
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
|
175 |
**BibTeX:**
|
176 |
|
177 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
|
179 |
**APA:**
|
180 |
|
181 |
-
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
pipeline_tag: text-generation
|
4 |
+
license: apache-2.0
|
5 |
+
tags: [long-sequence-generation, ultra-long-sequence, lossless-acceleration]
|
6 |
---
|
7 |
|
8 |
+
# Model Card for TokenSwift Models
|
|
|
|
|
|
|
9 |
|
10 |
+
TokenSwift is a novel framework designed to substantially accelerate the generation process of ultra-long sequences (up to 100K tokens) while maintaining the target model's inherent quality. This model significantly reduces generation time, offering lossless acceleration for long sequences. It's based on the research presented in [From Hours to Minutes: Lossless Acceleration of Ultra Long Sequence Generation up to 100K Tokens](https://hf.co/papers/2502.18890).
|
11 |
|
12 |
## Model Details
|
13 |
|
14 |
+
This model is a framework for accelerating ultra-long sequence generation. It is designed to be compatible with various Large Language Models (LLMs) via the HuggingFace Transformers library.
|
|
|
|
|
15 |
|
16 |
+
- **Developed by:** BIGAI-NLCO
|
17 |
+
- **Model type:** Long Sequence Generation Accelerator
|
18 |
+
- **Language(s) (NLP):** Multiple (supports models trained on various languages)
|
19 |
+
- **License:** Apache-2.0
|
20 |
+
- **Finetuned from model [optional]:** (Model-specific; varies based on the base model used)
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
+
### Model Sources
|
24 |
|
25 |
+
- **Repository:** https://github.com/bigai-nlco/TokenSwift
|
26 |
+
- **Paper:** https://arxiv.org/abs/2502.18890
|
27 |
|
|
|
|
|
|
|
28 |
|
29 |
## Uses
|
30 |
|
31 |
+
TokenSwift is designed to accelerate the generation of ultra-long sequences (up to 100K tokens) for various LLMs. Its key benefit is lossless acceleration, meaning that the generated text quality is identical to that of the underlying LLM.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
|
|
33 |
|
34 |
+
### Direct Use
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
+
TokenSwift acts as a wrapper around existing LLMs, speeding up their generation process. It's designed to be easily integrated into existing workflows. See examples below.
|
37 |
|
38 |
## How to Get Started with the Model
|
39 |
|
40 |
+
1. **Install:** Follow the installation instructions in the [GitHub repository](https://github.com/bigai-nlco/TokenSwift).
|
41 |
+
2. **Download:** Choose a pre-trained TokenSwift model from the Hugging Face Model Hub ([link to models on HuggingFace]).
|
42 |
+
3. **Inference:** Use the provided inference script in the repository, adapting the parameters to your needs. See the [GitHub README](https://github.com/bigai-nlco/TokenSwift) for detailed instructions and examples.
|
43 |
+
|
44 |
+
**Example using transformers:**
|
45 |
+
```python
|
46 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
47 |
+
import torch
|
48 |
+
|
49 |
+
model_path = "TokenSwift/TokenSwift-Llama-3.1-8B" # Replace with the actual model path
|
50 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
51 |
+
model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.bfloat16, device_map="auto", trust_remote_code=True)
|
52 |
+
|
53 |
+
prompt = "The key to success is"
|
54 |
+
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.cuda()
|
55 |
+
|
56 |
+
generated_ids = model.generate(
|
57 |
+
input_ids,
|
58 |
+
max_new_tokens=100,
|
59 |
+
# Add other generation parameters as needed
|
60 |
+
)
|
61 |
+
generated_text = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
|
62 |
+
print(generated_text)
|
63 |
+
```
|
64 |
+
|
65 |
+
**Example using TokenSwift command line:**
|
66 |
+
```bash
|
67 |
+
torchrun --master-port 1111 --nproc_per_node=1 main.py \
|
68 |
+
--model_type llama3_1 \
|
69 |
+
--ckpt_path your_checkpoint_path \
|
70 |
+
--prefill_len 4096 \
|
71 |
+
--retrival_max_budget 4096 \
|
72 |
+
--gen_len 102400 \
|
73 |
+
--gamma 4 \
|
74 |
+
--min_p 0.1 \
|
75 |
+
--temperature 1.0 \
|
76 |
+
--tree_decoding \
|
77 |
+
--ngram_topk 20 \
|
78 |
+
--penalty 1.2 \
|
79 |
+
--penalty_length 1024 \
|
80 |
+
--prompt_id 0
|
81 |
+
|
82 |
+
<NOTE: Modify the data and model path>
|
83 |
+
```
|
84 |
+
|
85 |
+
|
86 |
+
## Citation
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
**BibTeX:**
|
89 |
|
90 |
+
```bibtex
|
91 |
+
@misc{tokenswift,
|
92 |
+
title={From Hours to Minutes: Lossless Acceleration of Ultra Long Sequence Generation up to 100K Tokens},
|
93 |
+
author={Tong Wu and Junzhe Shen and Zixia Jia and Yuxuan Wang and Zilong Zheng},
|
94 |
+
year={2025},
|
95 |
+
eprint={2502.18890},
|
96 |
+
archivePrefix={arXiv},
|
97 |
+
primaryClass={cs.CL},
|
98 |
+
url={https://arxiv.org/abs/2502.18890},
|
99 |
+
}
|
100 |
+
```
|
101 |
|
102 |
**APA:**
|
103 |
|
104 |
+
Wu, T., Shen, J., Jia, Z., Wang, Y., & Zheng, Z. (2025). From Hours to Minutes: Lossless Acceleration of Ultra Long Sequence Generation up to 100K Tokens. *arXiv preprint arXiv:2502.18890*.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|