Tirendaz's picture
Update README.md
ed7d40f verified
metadata
library_name: transformers
language:
  - tr
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_13_0
metrics:
  - wer
model-index:
  - name: Whisper Large V3 Pro Turkish - Evren Ozkip
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 13
          type: mozilla-foundation/common_voice_13_0
          config: tr
          split: test
          args: tr
        metrics:
          - name: Wer
            type: wer
            value: 31.350330500472147

Whisper Large V3 Pro on the Turkish Dataset - Evren Ozkip

This model is a fine-tuned version of openai/whisper-small on the Turkish Common Voice 13 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4715
  • Wer Ortho: 35.2262
  • Wer: 31.3503

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: constant_with_warmup
  • lr_scheduler_warmup_steps: 50
  • training_steps: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Ortho Wer
No log 0.08 20 0.3358 25.0241 21.7186
0.4294 0.16 40 0.3339 26.0828 22.7573
0.2121 0.24 60 0.5079 54.9567 50.1416
0.3798 0.32 80 0.4675 55.2454 50.8026
0.3469 0.4 100 0.4715 35.2262 31.3503

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.1.1+cu121
  • Datasets 3.6.0
  • Tokenizers 0.21.1