Tesslate โ€ข Research Preview

WEBGEN-4B-Preview

A 4B web-only generator that turns one prompt into clean, responsive HTML/CSS/Tailwind. Small enough for laptops; opinionated for consistent, modern layouts.

TRY IT HERE! Get on Designer Open weights Web-only bias Mobile-first output No external JS by default
Hero sample Pricing sample Features sample Hero sample Pricing sample Features sample

What it is

WEBGEN-4B-Preview focuses solely on generating production-lean websites. It prefers semantic HTML, sane spacing, and modern component blocks (hero, grids, pricing, FAQ).

Why 4B

Small enough for local runs and fast iteration, while retaining strong structure/consistency for HTML/CSS/Tailwind output.


Quickstart

Transformers

from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

model_id = "Tesslate/WEBGEN-4B-Preview" tok = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.bfloat16, device_map="auto" )

prompt = """Make a single-file landing page for 'LatticeDB'. Style: modern, generous whitespace, Tailwind, rounded-xl, soft gradients. Sections: navbar, hero (headline + 2 CTAs), features grid, pricing (3 tiers), FAQ accordion, footer. Constraints: semantic HTML, no external JS."""

inputs = tok(prompt, return_tensors="pt").to(model.device) out = model.generate(**inputs, max_new_tokens=2000, temperature=0.7, top_p=0.9) print(tok.decode(out[0], skip_special_tokens=True))

vLLM

vllm serve Tesslate/WEBGEN-4B-Preview \
  --host 0.0.0.0 --port 8000 \
  --max-model-len 65536 \
  --gpu-memory-utilization 0.92

sglang

python -m sglang.launch_server \
  --model-path Tesslate/WEBGEN-4B-Preview \
  --host 0.0.0.0 --port 5000 \
  --mem-fraction-static 0.94 \
  --attention-backend flashinfer \
  --served-model-name webgen-4b

Tip: Lower temperature (e.g., 0.4โ€“0.6) yields stricter, cleaner markup. Raise it for more visual variety.


Inference Settings (suggested)

ParamValueNotes
temperature0.6Balance creativity & consistency (lower if quantized)
top_p0.9Nucleus sampling
top_k40Optional vocab restriction
max_new_tokens1200โ€“2500Single-file sites often fit < 1500
repetition_penalty1.1Reduces repetitive classes/markup

Prompts that work well

Starter

Make a single-file landing page for "RasterFlow" (GPU video pipeline).
Style: modern tech, muted palette, Tailwind, rounded-xl, subtle gradients.
Sections: navbar, hero (big headline + 2 CTAs), logos row, features (3x cards),
code block (copyable), pricing (3 tiers), FAQ accordion, footer.
Constraints: semantic HTML, no external JS. Return ONLY the HTML code.

Design-strict

Use an 8pt spacing system. Palette: slate with indigo accents.
Typography scale: 14/16/18/24/36/56. Max width: 1200px.
Avoid shadows > md; prefer borders/dividers.

Quantization & VRAM (example)

FormatFootprintNotes
BF168.05 GBFastest, best fidelity
GGUF Q5_K_M2.89 GBGreat quality/size trade-off
GGUF Q4_K_M2.5 GBSmallest comfortable for laptops

Intended Use & Scope

  • Primary: Generate complete, single-file websites (landing pages, marketing pages, simple docs) with semantic HTML and Tailwind classes.
  • Secondary: Component blocks (hero, pricing, FAQ) for manual composition.
Limitations
  • Accessibility: adds headings/labels but ARIA coverage may need review.
  • JS widgets: kept light unless explicitly requested in prompt.
Ethical Considerations
  • Curate prompts appropriately.
  • When using third-party logos/assets, ensure you have rights or use open sources.

Training Summary (research preview)

  • Base: Qwen/Qwen3-4B-Instruct
  • Objective: Tight web-only bias; reward semantic structure, spacing rhythm, and responsiveness.
  • Data: Mixture of curated HTML/CSS/Tailwind snippets, component libraries, and synthetic page specs.
  • Recipe: SFT with format constraints โ†’ instruction tuning โ†’ style/rhythm preference optimization.
  • Context: effective ~64k; trained to keep default outputs within practical page length.

Example Outputs

Community

โ€œWhy are good design models so expensiveโ€ โ€” Tesslate Team

Citation

@misc{tesslate_webgen_4b_preview_2025,
title   = {WEBGEN-4B-Preview: Design-first web generation with a 4B model},
author  = {Tesslate Team},
year    = {2025},
url     = {https://huggingface.co/Tesslate/WEBGEN-4B-Preview}
}
Downloads last month
-
Safetensors
Model size
4.02B params
Tensor type
BF16
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Tesslate/WEBGEN-4B-Preview

Finetuned
(33)
this model
Quantizations
2 models