| # Backend Code Generation Model - Setup & Usage Guide | |
| ## π οΈ Installation & Setup | |
| ### 1. Install Dependencies | |
| ```bash | |
| pip install torch transformers datasets pandas numpy aiohttp requests | |
| pip install accelerate # For faster training | |
| ``` | |
| ### 2. Set Environment Variables | |
| ```bash | |
| # Optional: GitHub token for collecting real repositories | |
| export GITHUB_TOKEN="your_github_token_here" | |
| # For GPU training (if available) | |
| export CUDA_VISIBLE_DEVICES=0 | |
| ``` | |
| ### 3. Directory Structure | |
| ``` | |
| backend-ai-trainer/ | |
| βββ training_pipeline.py # Main pipeline code | |
| βββ data/ | |
| β βββ raw_dataset.json # Collected training data | |
| β βββ processed/ # Preprocessed data | |
| βββ models/ | |
| β βββ backend_code_model/ # Trained model output | |
| β βββ checkpoints/ # Training checkpoints | |
| βββ evaluation/ | |
| βββ test_cases.json # Test scenarios | |
| βββ results/ # Evaluation results | |
| ``` | |
| ## πββοΈ Quick Start | |
| ### Option A: Full Automated Pipeline | |
| ```python | |
| import asyncio | |
| from training_pipeline import TrainingPipeline | |
| config = { | |
| 'base_model': 'microsoft/DialoGPT-medium', | |
| 'output_dir': './models/backend_code_model', | |
| 'github_token': 'your_token_here', # Optional | |
| } | |
| pipeline = TrainingPipeline(config) | |
| asyncio.run(pipeline.run_full_pipeline()) | |
| ``` | |
| ### Option B: Step-by-Step Execution | |
| #### Step 1: Collect Training Data | |
| ```python | |
| from training_pipeline import DataCollector | |
| import asyncio | |
| collector = DataCollector() | |
| # Collect from GitHub (requires token) | |
| github_queries = [ | |
| 'express api backend', | |
| 'fastapi python backend', | |
| 'django rest api', | |
| 'nodejs backend server', | |
| 'flask api backend' | |
| ] | |
| asyncio.run(collector.collect_github_repositories(github_queries, max_repos=100)) | |
| # Generate synthetic examples | |
| collector.generate_synthetic_examples(count=500) | |
| # Save dataset | |
| collector.save_dataset('training_data.json') | |
| ``` | |
| #### Step 2: Preprocess Data | |
| ```python | |
| from training_pipeline import DataPreprocessor | |
| preprocessor = DataPreprocessor() | |
| processed_examples = preprocessor.preprocess_examples(collector.collected_examples) | |
| training_dataset = preprocessor.create_training_dataset(processed_examples) | |
| print(f"Created dataset with {len(training_dataset)} examples") | |
| ``` | |
| #### Step 3: Train Model | |
| ```python | |
| from training_pipeline import CodeGenerationModel | |
| model = CodeGenerationModel('microsoft/DialoGPT-medium') | |
| model.fine_tune(training_dataset, output_dir='./trained_model') | |
| ``` | |
| #### Step 4: Generate Code | |
| ```python | |
| # Generate a complete backend application | |
| generated_code = model.generate_code( | |
| description="E-commerce API with user authentication and product management", | |
| framework="fastapi", | |
| language="python" | |
| ) | |
| print("Generated Backend Application:") | |
| print("=" * 50) | |
| print(generated_code) | |
| ``` | |
| ## π― Training Configuration Options | |
| ### Model Selection | |
| ```python | |
| # Lightweight for testing | |
| config['base_model'] = 'microsoft/DialoGPT-small' | |
| # Balanced performance | |
| config['base_model'] = 'microsoft/DialoGPT-medium' | |
| # High quality (requires more resources) | |
| config['base_model'] = 'microsoft/DialoGPT-large' | |
| ``` | |
| ### Training Parameters | |
| ```python | |
| training_config = { | |
| 'num_epochs': 5, # More epochs = better learning | |
| 'batch_size': 4, # Adjust based on GPU memory | |
| 'learning_rate': 5e-5, # Conservative learning rate | |
| 'max_length': 2048, # Maximum token length | |
| 'warmup_steps': 500, # Learning rate warmup | |
| 'save_steps': 1000, # Checkpoint frequency | |
| } | |
| ``` | |
| ### Framework Coverage | |
| The pipeline supports these backend frameworks: | |
| **Node.js Frameworks:** | |
| - Express.js - Most popular Node.js framework | |
| - NestJS - Enterprise-grade framework | |
| - Koa.js - Lightweight alternative | |
| **Python Frameworks:** | |
| - FastAPI - Modern, high-performance API framework | |
| - Django - Full-featured web framework | |
| - Flask - Lightweight and flexible | |
| **Go Frameworks:** | |
| - Gin - HTTP web framework | |
| - Fiber - Express-inspired framework | |
| ## π Evaluation & Testing | |
| ### Automatic Quality Assessment | |
| ```python | |
| from training_pipeline import ModelEvaluator | |
| evaluator = ModelEvaluator() | |
| # Test specific code generation | |
| generated_code = model.generate_code( | |
| description="User authentication API with JWT tokens", | |
| framework="express", | |
| language="javascript" | |
| ) | |
| # Get quality scores | |
| quality_scores = evaluator.evaluate_code_quality(generated_code, "javascript") | |
| print(f"Syntax Correctness: {quality_scores['syntax_correctness']:.2f}") | |
| print(f"Completeness: {quality_scores['completeness']:.2f}") | |
| print(f"Best Practices: {quality_scores['best_practices']:.2f}") | |
| ``` | |
| ### Comprehensive Benchmarking | |
| ```python | |
| test_cases = [ | |
| { | |
| 'description': 'REST API for task management with user authentication', | |
| 'framework': 'express', | |
| 'language': 'javascript' | |
| }, | |
| { | |
| 'description': 'GraphQL API for social media platform', | |
| 'framework': 'fastapi', | |
| 'language': 'python' | |
| }, | |
| { | |
| 'description': 'Microservice for payment processing', | |
| 'framework': 'gin', | |
| 'language': 'go' | |
| } | |
| ] | |
| benchmark_results = evaluator.benchmark_model(model, test_cases) | |
| print("Overall Performance:", benchmark_results) | |
| ``` | |
| ## π Advanced Usage | |
| ### Custom Data Sources | |
| ```python | |
| # Add your own training examples | |
| custom_examples = [ | |
| { | |
| 'description': 'Custom API requirement', | |
| 'requirements': ['Custom feature 1', 'Custom feature 2'], | |
| 'framework': 'fastapi', | |
| 'language': 'python', | |
| 'code_files': { | |
| 'main.py': '# Your custom code here', | |
| 'requirements.txt': 'fastapi\nuvicorn' | |
| } | |
| } | |
| ] | |
| # Add to training data | |
| collector.collected_examples.extend([CodeExample(**ex) for ex in custom_examples]) | |
| ``` | |
| ### Fine-tuning on Specific Domains | |
| ```python | |
| # Focus training on specific application types | |
| domain_specific_queries = [ | |
| 'microservices architecture', | |
| 'api gateway implementation', | |
| 'database orm integration', | |
| 'authentication middleware', | |
| 'rate limiting api' | |
| ] | |
| asyncio.run(collector.collect_github_repositories(domain_specific_queries)) | |
| ``` | |
| ### Export Trained Model | |
| ```python | |
| # Save model for deployment | |
| model.model.save_pretrained('./production_model') | |
| model.tokenizer.save_pretrained('./production_model') | |
| # Load for inference | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| production_model = AutoModelForCausalLM.from_pretrained('./production_model') | |
| production_tokenizer = AutoTokenizer.from_pretrained('./production_model') | |
| ``` | |
| ## π§ Troubleshooting | |
| ### Common Issues | |
| **1. Out of Memory Errors** | |
| ```python | |
| # Reduce batch size | |
| config['per_device_train_batch_size'] = 1 | |
| config['gradient_accumulation_steps'] = 4 | |
| # Use gradient checkpointing | |
| config['gradient_checkpointing'] = True | |
| ``` | |
| **2. Slow Training** | |
| ```python | |
| # Enable mixed precision (if GPU supports it) | |
| config['fp16'] = True | |
| # Use multiple GPUs | |
| config['dataloader_num_workers'] = 4 | |
| ``` | |
| **3. Poor Code Quality** | |
| ```python | |
| # Increase training data diversity | |
| collector.generate_synthetic_examples(count=1000) | |
| # Extend training duration | |
| config['num_train_epochs'] = 10 | |
| ``` | |
| ### Performance Optimization | |
| **For CPU Training:** | |
| ```python | |
| config['dataloader_pin_memory'] = False | |
| config['per_device_train_batch_size'] = 1 | |
| ``` | |
| **For GPU Training:** | |
| ```python | |
| config['fp16'] = True | |
| config['dataloader_pin_memory'] = True | |
| config['per_device_train_batch_size'] = 4 | |
| ``` | |
| ## π Expected Results | |
| After training on ~500-1000 examples, you should expect: | |
| - **Syntax Correctness**: 85-95% | |
| - **Code Completeness**: 80-90% | |
| - **Best Practices**: 70-85% | |
| - **Framework Coverage**: All major Node.js and Python frameworks | |
| - **Generation Speed**: 2-5 seconds per application | |
| ## π Continuous Improvement | |
| ### Regular Retraining | |
| ```python | |
| # Schedule weekly data collection | |
| import schedule | |
| def update_training_data(): | |
| asyncio.run(collector.collect_github_repositories(['new backend trends'])) | |
| schedule.every().week.do(update_training_data) | |
| ``` | |
| ### A/B Testing Different Models | |
| ```python | |
| models_to_compare = [ | |
| 'microsoft/DialoGPT-medium', | |
| 'microsoft/DialoGPT-large', | |
| 'gpt2-medium' | |
| ] | |
| for base_model in models_to_compare: | |
| model = CodeGenerationModel(base_model) | |
| results = evaluator.benchmark_model(model, test_cases) | |
| print(f"{base_model}: {results}") | |
| ``` | |
| ## π― Next Steps | |
| 1. **Start Small**: Begin with synthetic data and 100-200 examples | |
| 2. **Add Real Data**: Integrate GitHub repositories gradually | |
| 3. **Evaluate Regularly**: Monitor quality metrics after each training session | |
| 4. **Expand Frameworks**: Add support for new frameworks as needed | |
| 5. **Production Deploy**: Export model for API deployment | |
| This pipeline provides a complete foundation for building your own backend code generation AI. The modular design allows you to customize and extend each component based on your specific needs. |