metadata
library_name: transformers
language:
- ar
license: apache-2.0
base_model: openai/whisper-small
tags:
- automatic-speech-recognition
- arabic
- generated_from_trainer
datasets:
- itskavya/gp
metrics:
- wer
model-index:
- name: Whisper Small Informal Arabic (2)
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Informal Arabic
type: itskavya/gp
config: default
split: train
args: default
metrics:
- name: Wer
type: wer
value: 42.618384401114206
Whisper Small Informal Arabic (2)
This model is a fine-tuned version of openai/whisper-small on the Informal Arabic dataset. It achieves the following results on the evaluation set:
- Loss: 0.9910
- Wer: 42.6184
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 2000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.0003 | 40.0 | 1000 | 0.9573 | 42.6184 |
0.0002 | 80.0 | 2000 | 0.9910 | 42.6184 |
Framework versions
- Transformers 4.49.0
- Pytorch 2.5.1+cu118
- Datasets 3.3.2
- Tokenizers 0.21.0