Discussion
Collection
3 items
•
Updated
This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
More information needed
More information needed
More information needed
The following hyperparameters were used during training:
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.3586 | 0.3333 | 30 | 1.0285 | 0.6180 |
0.979 | 0.6667 | 60 | 0.8678 | 0.6180 |
0.881 | 1.0 | 90 | 0.8346 | 0.6180 |
0.8708 | 1.3333 | 120 | 0.7992 | 0.5618 |
0.7843 | 1.6667 | 150 | 0.7564 | 0.6517 |
0.756 | 2.0 | 180 | 0.7687 | 0.6180 |
0.762 | 2.3333 | 210 | 0.7968 | 0.6517 |
0.6622 | 2.6667 | 240 | 0.8213 | 0.6404 |
0.748 | 3.0 | 270 | 0.7339 | 0.6629 |
0.687 | 3.3333 | 300 | 0.7440 | 0.6180 |
0.5756 | 3.6667 | 330 | 0.7608 | 0.5843 |
0.6486 | 4.0 | 360 | 0.7609 | 0.6180 |
0.6012 | 4.3333 | 390 | 0.7512 | 0.6180 |
0.5314 | 4.6667 | 420 | 0.7674 | 0.6180 |
0.5419 | 5.0 | 450 | 0.7680 | 0.6180 |
Base model
google-bert/bert-base-uncased