File size: 4,585 Bytes
12a299a ca62cd9 12a299a bb6d72b 12a299a bb6d72b 12a299a bb6d72b 12a299a bb6d72b 12a299a bb6d72b 12a299a bb6d72b 12a299a bb6d72b 12a299a bb6d72b 12a299a bb6d72b 12a299a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
---
license: apache-2.0
datasets:
- TIGER-Lab/MMEB-train
language:
- en
base_model:
- Qwen/Qwen2-VL-7B-Instruct
library_name: transformers
---
A new checkpoint trained using [Qwen/Qwen2-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct) with an enhanced training setup (LoRA tuning, batch size of 2048, maximum sub-dataset size of 100k). This model has shown significantly improved performance on MMEB & Flickr30K compared to the previous models using Phi-3.5 and llava-v1.6-mistral as backbone.
This repo contains the code and data for [VLM2Vec: Training Vision-Language Models for Massive Multimodal Embedding Tasks](https://arxiv.org/abs/2410.05160). In this paper, we focus on building a unified multimodal embedding model suitable for a wide range of tasks. Our approach is based on transforming an existing, well-trained Vision-Language Model (VLM) into an embedding model.
## Github
- [Github](https://github.com/TIGER-AI-Lab/VLM2Vec)
## Data
Our model is being trained on MMEB-train and evaluated on MMEB-eval with contrastive learning. We only use in-batch negatives for training.
- Train data: https://huggingface.co/datasets/TIGER-Lab/MMEB-train
- Eval data: https://huggingface.co/datasets/TIGER-Lab/MMEB-eval
## Performance
This model outperforms the baselines and previous version of VLM2Vec by a large margin.
| Model | Classification | VQA | Retrieval | Grounding | IND | OOD | Overall |
|---------------------------------------|---------------|------|-----------|-----------|------|------|---------|
| Phi-3.5-V, Full-model fine-tuned (#crop=4) | 52.8 | 50.3 | 57.8 | 72.3 | 62.8 | 47.4 | 55.9 |
| Phi-3.5-V, LoRA | 54.8 | 54.9 | 62.3 | 79.5 | 66.5 | 52.0 | 60.1 |
| LLaVA-1.6, LoRA | 54.7 | 50.3 | 56.2 | 64.0 | 61.0 | 47.5 | 55.0 |
| LLaVA-1.6, LoRA | 61.2 | 49.9 | 67.4 | 86.1 | 67.5 | 57.1 | 62.9 |
| Qwen2-VL-2B, LoRA | 59.0 | 49.4 | 65.4 | 73.4 | 66.0 | 52.6 | 60.1 |
| **Qwen2-VL-7B, LoRA (this model)** | **62.6** | **57.8** | **69.9** | 81.7 | **72.2** | **57.8** | **65.8** |

## How to use VLM2Vec
(More details please refer to our Github repo, here is just a simple demo.)
First you can clone our github
```bash
git clone https://github.com/TIGER-AI-Lab/VLM2Vec.git
pip -r requirements.txt
```
```python
from src.model import MMEBModel
from src.arguments import ModelArguments
from src.model_utils import load_processor, QWEN2_VL, vlm_image_tokens
from PIL import Image
import torch
model_args = ModelArguments(
model_name='Qwen/Qwen2-VL-7B-Instruct',
checkpoint_path='TIGER-Lab/VLM2Vec-Qwen2VL-7B',
pooling='last',
normalize=True,
model_backbone='qwen2_vl',
lora=True
)
processor = load_processor(model_args)
model = MMEBModel.load(model_args)
model = model.to('cuda', dtype=torch.bfloat16)
model.eval()
# Image + Text -> Text
inputs = processor(text=f'{vlm_image_tokens[QWEN2_VL]} Represent the given image with the following question: What is in the image',
images=Image.open('figures/example.jpg'),
return_tensors="pt")
inputs = {key: value.to('cuda') for key, value in inputs.items()}
inputs['pixel_values'] = inputs['pixel_values'].unsqueeze(0)
inputs['image_grid_thw'] = inputs['image_grid_thw'].unsqueeze(0)
qry_output = model(qry=inputs)["qry_reps"]
string = 'A cat and a dog'
inputs = processor(text=string,
images=None,
return_tensors="pt")
inputs = {key: value.to('cuda') for key, value in inputs.items()}
tgt_output = model(tgt=inputs)["tgt_reps"]
print(string, '=', model.compute_similarity(qry_output, tgt_output))
## A cat and a dog = tensor([[0.3301]], device='cuda:0', dtype=torch.bfloat16)
string = 'A cat and a tiger'
inputs = processor(text=string,
images=None,
return_tensors="pt")
inputs = {key: value.to('cuda') for key, value in inputs.items()}
tgt_output = model(tgt=inputs)["tgt_reps"]
print(string, '=', model.compute_similarity(qry_output, tgt_output))
## A cat and a tiger = tensor([[0.2891]], device='cuda:0', dtype=torch.bfloat16)
```
## Citation
```
@article{jiang2024vlm2vec,
title={VLM2Vec: Training Vision-Language Models for Massive Multimodal Embedding Tasks},
author={Jiang, Ziyan and Meng, Rui and Yang, Xinyi and Yavuz, Semih and Zhou, Yingbo and Chen, Wenhu},
journal={arXiv preprint arXiv:2410.05160},
year={2024}
}
|