Update README.md
Browse files
README.md
CHANGED
@@ -43,31 +43,31 @@ pip -r requirements.txt
|
|
43 |
```python
|
44 |
from src.model import MMEBModel
|
45 |
from src.arguments import ModelArguments
|
46 |
-
from src.
|
47 |
-
|
48 |
-
import torch
|
49 |
-
from transformers import HfArgumentParser, AutoProcessor
|
50 |
from PIL import Image
|
51 |
-
import
|
52 |
-
|
53 |
|
54 |
-
model_args = (
|
55 |
-
model_name='
|
|
|
56 |
pooling='last',
|
57 |
normalize=True,
|
58 |
-
model_backbone='qwen2_vl'
|
|
|
|
|
59 |
|
60 |
processor = load_processor(model_args)
|
61 |
-
|
62 |
model = MMEBModel.load(model_args)
|
63 |
-
model.eval()
|
64 |
model = model.to('cuda', dtype=torch.bfloat16)
|
|
|
65 |
|
66 |
# Image + Text -> Text
|
67 |
-
inputs = processor(text='
|
68 |
images=Image.open('figures/example.jpg'),
|
69 |
return_tensors="pt")
|
70 |
inputs = {key: value.to('cuda') for key, value in inputs.items()}
|
|
|
|
|
71 |
qry_output = model(qry=inputs)["qry_reps"]
|
72 |
|
73 |
string = 'A cat and a dog'
|
@@ -77,7 +77,7 @@ inputs = processor(text=string,
|
|
77 |
inputs = {key: value.to('cuda') for key, value in inputs.items()}
|
78 |
tgt_output = model(tgt=inputs)["tgt_reps"]
|
79 |
print(string, '=', model.compute_similarity(qry_output, tgt_output))
|
80 |
-
## A cat and a dog = tensor([[0.
|
81 |
|
82 |
string = 'A cat and a tiger'
|
83 |
inputs = processor(text=string,
|
@@ -86,8 +86,7 @@ inputs = processor(text=string,
|
|
86 |
inputs = {key: value.to('cuda') for key, value in inputs.items()}
|
87 |
tgt_output = model(tgt=inputs)["tgt_reps"]
|
88 |
print(string, '=', model.compute_similarity(qry_output, tgt_output))
|
89 |
-
## A cat and a tiger = tensor([[0.
|
90 |
-
|
91 |
```
|
92 |
|
93 |
|
|
|
43 |
```python
|
44 |
from src.model import MMEBModel
|
45 |
from src.arguments import ModelArguments
|
46 |
+
from src.model_utils import load_processor, QWEN2_VL, vlm_image_tokens
|
|
|
|
|
|
|
47 |
from PIL import Image
|
48 |
+
import torch
|
|
|
49 |
|
50 |
+
model_args = ModelArguments(
|
51 |
+
model_name='Qwen/Qwen2-VL-7B-Instruct',
|
52 |
+
checkpoint_path='TIGER-Lab/VLM2Vec-Qwen2VL-7B',
|
53 |
pooling='last',
|
54 |
normalize=True,
|
55 |
+
model_backbone='qwen2_vl',
|
56 |
+
lora=True
|
57 |
+
)
|
58 |
|
59 |
processor = load_processor(model_args)
|
|
|
60 |
model = MMEBModel.load(model_args)
|
|
|
61 |
model = model.to('cuda', dtype=torch.bfloat16)
|
62 |
+
model.eval()
|
63 |
|
64 |
# Image + Text -> Text
|
65 |
+
inputs = processor(text=f'{vlm_image_tokens[QWEN2_VL]} Represent the given image with the following question: What is in the image',
|
66 |
images=Image.open('figures/example.jpg'),
|
67 |
return_tensors="pt")
|
68 |
inputs = {key: value.to('cuda') for key, value in inputs.items()}
|
69 |
+
inputs['pixel_values'] = inputs['pixel_values'].unsqueeze(0)
|
70 |
+
inputs['image_grid_thw'] = inputs['image_grid_thw'].unsqueeze(0)
|
71 |
qry_output = model(qry=inputs)["qry_reps"]
|
72 |
|
73 |
string = 'A cat and a dog'
|
|
|
77 |
inputs = {key: value.to('cuda') for key, value in inputs.items()}
|
78 |
tgt_output = model(tgt=inputs)["tgt_reps"]
|
79 |
print(string, '=', model.compute_similarity(qry_output, tgt_output))
|
80 |
+
## A cat and a dog = tensor([[0.3301]], device='cuda:0', dtype=torch.bfloat16)
|
81 |
|
82 |
string = 'A cat and a tiger'
|
83 |
inputs = processor(text=string,
|
|
|
86 |
inputs = {key: value.to('cuda') for key, value in inputs.items()}
|
87 |
tgt_output = model(tgt=inputs)["tgt_reps"]
|
88 |
print(string, '=', model.compute_similarity(qry_output, tgt_output))
|
89 |
+
## A cat and a tiger = tensor([[0.2891]], device='cuda:0', dtype=torch.bfloat16)
|
|
|
90 |
```
|
91 |
|
92 |
|