File size: 22,845 Bytes
efded61 b50f2a2 b743710 b50f2a2 b743710 b50f2a2 6b3abe1 b50f2a2 9ca7636 b50f2a2 b743710 97e7f89 b743710 97e7f89 b743710 4970f0b b743710 f070809 b743710 9ca7636 b743710 9ca7636 b743710 9ca7636 b743710 9ca7636 b743710 9ca7636 b743710 9ca7636 b743710 9ca7636 b743710 b50f2a2 b743710 9ca7636 b743710 9ca7636 b743710 9ca7636 b743710 b50f2a2 b743710 6b3abe1 b743710 1cd9bf7 b743710 c620a75 b743710 b50f2a2 c620a75 b67b4b2 c620a75 b10f52f c620a75 b743710 b50f2a2 b743710 b50f2a2 b743710 9ca7636 b743710 d5ef7f0 b743710 9ca7636 b50f2a2 9ca7636 b743710 b50f2a2 b743710 b50f2a2 b743710 9ca7636 b743710 6b3abe1 b10f52f b50f2a2 b743710 b50f2a2 2bdcf8d b50f2a2 6b3abe1 b50f2a2 2bdcf8d b50f2a2 b743710 9ca7636 b743710 9ca7636 b743710 9ca7636 b743710 f070809 b743710 f070809 b743710 9ca7636 b50f2a2 b743710 2d64c7b b743710 9ca7636 b50f2a2 39f6373 b50f2a2 b743710 1573575 b50f2a2 1573575 b50f2a2 1573575 b50f2a2 1573575 b50f2a2 1573575 b50f2a2 1573575 b50f2a2 efded61 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 |
---
tags:
- Voice Acticity Detection
- voice activity detection
- speech activity detection
- real time
- vad
- sad
- speech
- audio
- silero vad
- conversational
- automatic speech recognition
---
![TEN VAD banner][ten-vad-banner]
[](https://github.com/TEN-framework/ten-vad/discussions/)
[](https://github.com/TEN-framework/ten-vad/graphs/commit-activity)
[](https://github.com/TEN-framework/ten-vad/issues)

[](https://github.com/TEN-framework/ten-vad/pulls)
[](https://deepwiki.com/TEN-framework/TEN-vad)
[](https://GitHub.com/TEN-framework/ten-vad/watchers/?WT.mc_id=academic-105485-koreyst)
[](https://GitHub.com/TEN-framework/ten-vad/network/?WT.mc_id=academic-105485-koreyst)
[](https://GitHub.com/TEN-framework/ten-vad/stargazers/?WT.mc_id=academic-105485-koreyst)
*Latest News* π₯
- [2025/07] We support **Python inference** on **macOS** and **Windows** with usage of the prebuilt-lib!
- [2025/06] We **finally** released and **open-sourced** the **ONNX** model and the corresponding **preprocessing code**! Now you can deploy **TEN VAD** on **any platform** and **any hardware architecture**!
- [2025/06] We are excited to announce the release of **WASM+JS** for Web WASM Support.
## Table of Contents
- [Welcome to TEN](#welcome-to-ten)
- [TEN Hugging Face Space](#ten-hugging-face-space)
- [Introduction](#introduction)
- [Key Features](#key-features)
- [High-Performance](#1-high-performance)
- [Agent-Friendly](#2-agent-friendly)
- [Lightweight](#3-lightweight)
- [Multiple Programming Languages and Platforms](#4-multiple-programming-languages-and-platforms)
- [Supported Sampling Rate and Hop Size](#5-supproted-sampling-rate-and-hop-size)
- [Installation](#installation)
- [Quick Start](#quick-start)
- [Python Usage](#python-usage)
- [Linux](#1-linux)
- [JS Usage](#js-usage)
- [Web](#1-web)
- [C Usage](#c-usage)
- [Linux](#1-linux-1)
- [Windows](#2-windows)
- [macOS](#3-macos)
- [Android](#4-android)
- [iOS](#5-ios)
- [TEN Ecosystem](#ten-ecosystem)
- [Ask Questions](#ask-questions)
- [Citations](#citations)
- [License](#license)
## Welcome to TEN
TEN is a collection of open-source projects for building real-time, multimodal conversational voice agents. It includes [ TEN Framework ](https://github.com/ten-framework/ten-framework), [ TEN VAD ](https://github.com/ten-framework/ten-vad), [ TEN Turn Detection ](https://github.com/ten-framework/ten-turn-detection), TEN Agent, TMAN Designer, and [ TEN Portal ](https://github.com/ten-framework/portal), all fully open-source.
| Community Channel | Purpose |
| ---------------- | ------- |
| [](https://twitter.com/intent/follow?screen_name=TenFramework) | Follow TEN Framework on X for updates and announcements |
| [](https://www.linkedin.com/company/ten-framework) | Follow TEN Framework on LinkedIn for updates and announcements |
| [](https://discord.gg/VnPftUzAMJ) | Join our Discord community to connect with developers |
| [](https://huggingface.co/TEN-framework) | Join our Hugging Face community to explore our spaces and models |
| [](https://github.com/TEN-framework/ten-agent/discussions/170) | Join our WeChat group for Chinese community discussions |
> \[!IMPORTANT]
>
> **Star TEN Repositories** βοΈ
>
> Get instant notifications for new releases and updates. Your support helps us grow and improve TEN!

## TEN Hugging Face Space
<https://github.com/user-attachments/assets/725a8318-d679-4b17-b9e4-e3dce999b298>
You are more than welcome to [Visit TEN Hugging Face Space](https://huggingface.co/spaces/TEN-framework/ten-agent-demo) to try VAD and Turn Detection together.
## **Introduction**
**TEN VAD** is a real-time voice activity detection system designed for enterprise use, providing accurate frame-level speech activity detection. It shows superior precision compared to both WebRTC VAD and Silero VAD, which are commonly used in the industry. Additionally, TEN VAD offers lower computational complexity and reduced memory usage compared to Silero VAD. Meanwhile, the architecture's temporal efficiency enables rapid voice activity detection, significantly reducing end-to-end response and turn detection latency in conversational AI systems.
## **Key Features**
### **1. High-Performance:**
The precision-recall curves comparing the performance of WebRTC VAD (pitch-based), Silero VAD, and TEN VAD are shown below. The evaluation is conducted on the precisely manually annotated testset. The audio files are from librispeech, gigaspeech, DNS Challenge etc. As demonstrated, TEN VAD achieves the best performance. Additionally, cross-validation experiments conducted on large internal real-world datasets demonstrate the reproducibility of these findings. The **testset with annotated labels** is released in directory "testset" of this repository.
<div style="text-align:">
<img src="./examples/images/PR_Curves_testset.png" width="800">
</div>
Note that the default threshold of 0.5 is used to generate binary speech indicators (0 for non-speech signal, 1 for speech signal). This threshold needs to be tuned according to your domain-specific task. The precision-recall curve can be obtained by executing the following script on Linux x64. The output figure will be saved in the same directory as the script.
```
cd ./examples
python plot_pr_curves.py
```
### **2. Agent-Friendly:**
As illustrated in the figure below, TEN VAD rapidly detects speech-to-non-speech transitions, whereas Silero VAD suffers from a delay of several hundred milliseconds, resulting in increased end-to-end latency in human-agent interaction systems. In addition, as demonstrated in the 6.5s-7.0s audio segment, Silero VAD fails to identify short silent durations between adjacent speech segments.
<div style="text-align:">
<img src="./examples/images/Agent-Friendly-image.png" width="800">
</div>
### **3. Lightweight:**
We evaluated the RTF (Real-Time Factor) across five distinct platforms, each equipped with varying CPUs. TEN VAD demonstrates much lower computational complexity and smaller library size than Silero VAD.
<table>
<tr>
<th align="center" rowspan="2" valign="middle"> Platform </th>
<th align="center" rowspan="2" valign="middle"> CPU </th>
<th align="center" colspan="2"> RTF </th>
<th align="center" colspan="2"> Lib Size </th>
</tr>
<tr>
<th align="center" style="white-space: nowrap;"> TEN VAD </th>
<th align="center" style="white-space: nowrap;"> Silero VAD </th>
<th align="center"> TEN VAD </th>
<th align="center"> Silero VAD </th>
</tr>
<tr>
<th align="center" rowspan="3"> Linux </th>
<td style="white-space: nowrap;"> AMD Ryzen 9 5900X 12-Core </td>
<td align="center"> 0.0150 </td>
<td rowspan="2" style="text-align: center; vertical-align: middle;"> / </td>
<td rowspan="3" style="text-align: center; vertical-align: middle;"> 306KB </td>
<td rowspan="9" style="text-align: center; vertical-align: middle;"> 2.16MB(JIT) / 2.22MB(ONNX) </td>
</tr>
<tr>
<td > Intel(R) Xeon(R) Platinum 8253 </td>
<td align="center"> 0.0136 </td>
</tr>
<tr>
<td > Intel(R) Xeon(R) Gold 6348 CPU @ 2.60GHz </td>
<td align="center"> 0.0086 </td>
<td align="center"> 0.0127 </td>
</tr>
<tr>
<th align="center"> Windows </th>
<td> Intel i7-10710U </td>
<td align="center"> 0.0150 </td>
<td rowspan="6" style="text-align: center; vertical-align: middle;"> / </td>
<td align="center" style="white-space: nowrap;"> 464KB(x86) / 508KB(x64) </td>
</tr>
<tr>
<th align="center"> macOS </th>
<td> M1 </td>
<td align="center"> 0.0160 </td>
<td align="center"> 731KB </td>
</tr>
<tr>
<th align="center" rowspan="2"> Android </th>
<td> Galaxy J6+ (32bit, 425) </td>
<td align="center"> 0.0570 </td>
<td rowspan="2" style="text-align: center; vertical-align: middle;"> 373KB(v7a) / 532KB(v8a)</td>
</tr>
<tr>
<td> Oppo A3s (450) </td>
<td align="center"> 0.0490 </td>
</tr>
<tr>
<th align="center" rowspan="2"> iOS </th>
<td> iPhone6 (A8) </td>
<td align="center"> 0.0210 </td>
<td rowspan="2" style="text-align: center; vertical-align: middle;"> 320KB</td>
</tr>
<tr>
<td> iPhone8 (A11) </td>
<td align="center"> 0.0050 </td>
</tr>
</table>
<style>
th, td {
border: 1px solid #ddd;
padding: 8px;
}
</style>
### **4. Multiple programming languages and platforms:**
TEN VAD provides cross-platform C compatibility across five operating systems (Linux x64, Windows, macOS, Android, iOS), with Python bindings optimized for Linux x64, with wasm for Web.
### **5. Supproted sampling rate and hop size:**
TEN VAD operates on 16kHz audio input with configurable hop sizes (optimized frame configurations: 160/256 samples=10/16ms). Other sampling rates must be resampled to 16kHz.
## **Installation**
```
git clone https://huggingface.co/TEN-framework/ten-vad
```
## **Quick Start**
The project supports five major platforms with dynamic library linking.
<table>
<tr>
<th align="center"> Platform </th>
<th align="center"> Dynamic Lib </th>
<th align="center"> Supported Arch </th>
<th align="center"> Interface Language </th>
<th align="center"> Header </th>
<th align="center"> Comment </v>
</tr>
<tr>
<th align="center"> Linux </th>
<td align="center"> libten_vad.so </td>
<td align="center"> x64 </td>
<td align="center"> Python, C </td>
<td rowspan="5" style="text-align: center; vertical-align: middle;">ten_vad.h <br> ten_vad.py</td>
<td> </td>
</tr>
<tr>
<th align="center"> Windows </th>
<td align="center"> ten_vad.dll </td>
<td align="center"> x64, x86 </td>
<td align="center"> C </td>
<td> </td>
</tr>
<tr>
<th align="center"> macOS </th>
<td align="center"> ten_vad.framework </td>
<td align="center"> arm64, x86_64 </td>
<td align="center"> C </td>
<td> </td>
</tr>
<tr>
<th align="center"> Android </th>
<td align="center"> libten_vad.so </td>
<td align="center"> arm64-v8a, armeabi-v7a </td>
<td align="center"> C </td>
<td> </td>
</tr>
<tr>
<th align="center"> iOS </th>
<td align="center" style="text-align: center; vertical-align: middle;"> ten_vad.framework </td>
<td align="center" style="text-align: center; vertical-align: middle;"> arm64 </td>
<td align="center"> C </td>
<td> 1. not simulator <br> 2. not iPad </td>
</tr>
</table>
### **Python Usage**
#### **1. Linux / macOS / Windows**
#### **Requirements**
- numpy (Version 1.17.4/1.26.4 verified)
- scipy (Version >= 1.5.0)
- scikit-learn (Version 1.2.2/1.5.0 verified, for plotting PR curves)
- matplotlib (Version 3.1.3/3.10.0 verified, for plotting PR curves)
- torchaudio (Version 2.2.2 verified, for plotting PR curves)
- Python version 3.8.19/3.10.14 verified
Note: You could use other versions of above packages, but we didn't test other versions.
<br>
The **lib** only depend on numpy, you have to install the dependency via requirements.txt:
```pip install -r requirements.txt```
For **running demo or plotting PR curves**, you have to install the dependencies:
```pip install -r ./examples/requirements.txt```
Note that if you did not install **libc++1**, you have to run the code below to install it:
```
sudo apt update
sudo apt install libc++1
```
<br>
#### **Usage**
Note: For usage in python, you can either use it by **git clone** or **pip**.
##### **By using git clone:**
1. Clone the repository
```
git clone https://github.com/TEN-framework/ten-vad.git
```
2. Enter examples directory
```
cd ./examples
```
3. Test
```
python test.py s0724-s0730.wav out.txt
```
##### **By using pip:**
1. Install via pip
```
pip install -U --force-reinstall -v git+https://github.com/TEN-framework/ten-vad.git
```
2. Write your own use cases and import the class, the attributes of class TenVAD you can refer to ten_vad.py
```
from ten_vad import TenVad
```
### **JS Usage**
#### **1. Web**
##### **Requirements**
- Node.js (macOS v14.18.2, Linux v16.20.2 verified)
- Terminal
##### **Usage**
```
1) cd ./examples
2) node test_node.js s0724-s0730.wav out.txt
```
### **C Usage**
#### **Build Scripts**
Located in examples/ directory and examples_onnx (for **ONNX** usage on Linux):
- Linux: build-and-deploy-linux.sh
- Windows: build-and-deploy-windows.bat
- macOS: build-and-deploy-mac.sh
- Android: build-and-deploy-android.sh
- iOS: build-and-deploy-ios.sh
#### **Dynamic Library Configuration**
Runtime library path configuration:
- Linux/Android: LD_LIBRARY_PATH
- macOS: DYLD_FRAMEWORK_PATH
- Windows: DLL in executable directory or system PATH
#### **Customization**
- Modify platform-specific build scripts
- Adjust CMakeLists.txt
- Configure toolchain and architecture settings
#### **Overview of Usage**
- Navigate to examples/ or examples_onx/ (for **ONNX** usage on Linux)
- Execute platform-specific build script
- Configure dynamic library path
- Run demo with sample audio s0724-s0730.wav
- Processed results saved to out.txt
The detailed usage methods of each platform are as follows <br>
#### **1. Linux**
##### **Requirements**
- Clang (e.g. 6.0.0-1ubuntu2 verified)
- CMake
- Terminal
Note that if you did not install **libc++1** (Linux), you have to run the code below to install it:
```
sudo apt update
sudo apt install libc++1
```
##### **Usage (prebuilt-lib)**
```
1) cd ./examples
2) ./build-and-deploy-linux.sh
```
##### **Usage (ONNX)**
You have to download the **onnxruntime** packages from the [microsoft official onnxruntime github website](https://github.com/microsoft/onnxruntime). Note that the version of onnxruntime must be higher than or equal to 1.17.1 (e.g. onnxruntime-linux-x64-1.17.1.tgz).
<br>
You can check the official **ONNX Runtime releases** from [this website](https://github.com/microsoft/onnxruntime/tags). And for example, to download version 1.17.1 (Linux x64), use [this link](https://github.com/microsoft/onnxruntime/releases/download/v1.17.1/onnxruntime-linux-x64-1.17.1.tgz). After extracting the compressed file, you'll find two important directories:`include/` - header files, `lib/` - library files
```
1) cd examples_onnx/
2) ./build-and-deploy-linux.sh --ort-path /absolute/path/to/your/onnxruntime/root/dir
```
Note 1: If executing the onnx demo from a different directory than the one used when running build-and-deploy-linux.sh, ensure to create a symbolic link to src/onnx_model/ to prevent ONNX model file loading failures.
<br>
Note 2: The **ONNX model** locates in `src/onnx_model` directory.
#### **2. Windows**
##### **Requirements**
- Visual Studio (2017, 2019, 2022 verified)
- CMake (3.26.0-rc6 verified)
- Terminal (MINGW64 or powershell)
##### **Usage**
```
1) cd ./examples
2) Configure "build-and-deploy-windows.bat" with your preferred:
- Architecture (default: x64)
- Visual Studio version (default: 2019)
3) ./build-and-deploy-windows.bat
```
#### **3. macOS**
##### **Requirements**
- Xcode (15.2 verified)
- CMake (3.19.2 verified)
##### **Usage**
```
1) cd ./examples
2) Configure "build-and-deploy-mac.sh" with your target architecture:
- Default: arm64 (Apple Silicon)
- Alternative: x86_64 (Intel)
3) ./build-and-deploy-mac.sh
```
#### **4. Android**
##### **Requirements**
- NDK (r25b, macOS verified)
- CMake (3.19.2, macOS verified)
- adb (1.0.41, macOS verified)
##### **Usage**
```
1) cd ./examples
2) export ANDROID_NDK=/path/to/android-ndk # Replace it with your NDK installation path
3) Configure "build-and-deploy-android.sh" with your build settings:
- Architecture: arm64-v8a (default) or armeabi-v7a
- Toolchain: aarch64-linux-android-clang (default) or custom NDK toolchain
4) ./build-and-deploy-android.sh
```
#### **5. iOS**
##### **Requirements**
Xcode (15.2, macOS verified)
CMake (3.19.2, macOS verified)
##### **Usage**
1. Enter examples directory
```
cd ./examples
```
2. Creates Xcode project files for iOS build
```
./build-and-deploy-ios.sh
```
3. Follow the steps below to build and test on iOS device:
3.1. Use Xcode to open .xcodeproj files: a) cd ./build-ios, b) open ./ten_vad_demo.xcodeproj
3.2. In Xcode IDE, select ten_vad_demo target (should check: Edit Scheme β Run β Release), then select your iOS Device (not simulator).
<div style="text-align:">
<img src="./examples/images/ios_image_1.jpg" width="800">
</div>
3.3. Drag ten_vad/lib/iOS/ten_vad.framework to "Frameworks, Libraries, and Embedded Content"
- (in TARGETS β ten_vad_demo β ten_vad_demo β General, should set Embed to "Embed & Sign").
- or add it directly in this way: "Frameworks, Libraries, and Embedded Content" β "+" β Add Other... β Add Files β...
- Note: If this step is not completed, you may encounter the following runtime error: "dyld: Library not loaded: @rpath/ten_vad.framework/ten_vad".
<div style="text-align:">
<img src="./examples/images/ios_image_2.png" width="800">
</div>
3.4. Configure iOS device Signature
- in TARGETS β ten_vad_demo β Signing & Capabilities β Signing
- Modify Bundle Identifier: modify "com.yourcompany" to yours;
- Specify Provisioning Profile
- In TARGETS β ten_vad_demo β Build Settings β Signing β Code Signing Identity:
- Specify your Certification
3.5. Build in Xcode and run demo on your device.
## TEN Ecosystem
| Project | Preview |
| ------- | ------- |
| [**ποΈ TEN Framework**][ten-framework-link]<br>TEN is an open-source framework for real-time, multimodal conversational AI.<br><br>![][ten-framework-shield] | ![][ten-framework-banner] |
| [**οΈπ TEN Turn Detection**][ten-turn-detection-link]<br>TEN is for full-duplex dialogue communication.<br><br>![][ten-turn-detection-shield] | ![][ten-turn-detection-banner] |
| [**π TEN VAD**][ten-vad-link]<br>TEN VAD is a low-latency, lightweight and high-performance streaming voice activity detector (VAD).<br><br>![][ten-vad-shield] | ![][ten-vad-banner] |
| [**ποΈ TEN Agent**][ten-agent-link]<br>TEN Agent is a showcase of TEN Framewrok.<br><br> | ![][ten-agent-banner] |
| **π¨ TMAN Designer** <br>TMAN Designer is low/no code option to make a voice agent with easy to use workflow UI.<br><br> | ![][tman-designer-banner] |
| [**π TEN Portal**][ten-portal-link]<br>The official site of TEN framework, it has documentation and blog.<br><br>![][ten-portal-shield] | ![][ten-portal-banner] |
<br>
## Ask Questions
[](https://deepwiki.com/TEN-framework/TEN-vad)
Most questions can be answered by using DeepWiki, it is fast, intutive to use and supports multiple languages.
## **Citations**
```
@misc{TEN VAD,
author = {TEN Team},
title = {TEN VAD: A Low-Latency, Lightweight and High-Performance Streaming Voice Activity Detector (VAD)},
year = {2025},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {https://github.com/TEN-framework/ten-vad.git},
email = {[email protected]}
}
```
## License
This project is licensed under Apache 2.0 with certain conditions. Refer to the "LICENSE" file in the root directory for detailed information. Note that `pitch_est.cc` contains modified code derived from [LPCNet](https://github.com/xiph/LPCNet), which is [BSD-2-Clause](https://spdx.org/licenses/BSD-2-Clause.html) and [BSD-3-Clause](https://spdx.org/licenses/BSD-3-Clause.html) licensed, refer to the NOTICES file in the root directory for detailed information.
[back-to-top]: https://img.shields.io/badge/-Back_to_top-gray?style=flat-square
[ten-framework-shield]: https://img.shields.io/github/stars/ten-framework/ten_framework?color=ffcb47&labelColor=gray&style=flat-square&logo=github
[ten-framework-banner]: https://github.com/user-attachments/assets/7c8f72d7-3993-4d01-8504-b71578a22944
[ten-framework-link]: https://github.com/ten-framework/ten_framework
[ten-vad-link]: https://github.com/ten-framework/ten-vad
[ten-vad-shield]: https://img.shields.io/github/stars/ten-framework/ten-vad?color=ffcb47&labelColor=gray&style=flat-square&logo=github
[ten-vad-banner]: https://github.com/user-attachments/assets/d45870e4-9453-4047-8163-08737f82863f
[ten-turn-detection-link]: https://github.com/ten-framework/ten-turn-detection
[ten-turn-detection-shield]: https://img.shields.io/github/stars/ten-framework/ten-turn-detection?color=ffcb47&labelColor=gray&style=flat-square&logo=github
[ten-turn-detection-banner]: https://github.com/user-attachments/assets/8d0ec716-5d0e-43e4-ad9a-d97b17305658
[ten-agent-link]: https://github.com/TEN-framework/ten-framework/tree/main/ai_agents
[ten-agent-banner]: https://github.com/user-attachments/assets/38de2207-939b-4702-a0aa-04491f5b5275
[tman-designer-banner]: https://github.com/user-attachments/assets/804c3543-0a47-42b7-b40b-ef32b742fb8f
[ten-portal-link]: https://github.com/ten-framework/portal
[ten-portal-shield]: https://img.shields.io/github/stars/ten-framework/portal?color=ffcb47&labelColor=gray&style=flat-square&logo=github
[ten-portal-banner]: https://github.com/user-attachments/assets/e17d8aaa-5928-45dd-ac71-814928e26a89 |