Ziyi223 commited on
Commit
9ca7636
·
verified ·
1 Parent(s): b50f2a2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +28 -58
README.md CHANGED
@@ -11,12 +11,11 @@
11
  [![GitHub forks](https://img.shields.io/github/forks/TEN-framework/ten-vad?style=social&label=Fork)](https://GitHub.com/TEN-framework/ten-vad/network/?WT.mc_id=academic-105485-koreyst)
12
  [![GitHub stars](https://img.shields.io/github/stars/TEN-framework/ten-vad?style=social&label=Star)](https://GitHub.com/TEN-framework/ten-vad/stargazers/?WT.mc_id=academic-105485-koreyst)
13
 
14
- <br>
15
 
16
  *Latest News* 🔥
17
  - [2025/06] We **finally** released and **open-sourced** the **ONNX** model and the corresponding **preprocessing code**! Now you can deploy **TEN VAD** on **any platform** and **any hardware architecture**!
18
  - [2025/06] We are excited to announce the release of **WASM+JS** for Web WASM Support.
19
- <br>
20
 
21
  ## Table of Contents
22
 
@@ -46,13 +45,11 @@
46
  - [Citations](#citations)
47
  - [License](#license)
48
 
49
- <br>
50
 
51
  ## Welcome to TEN
52
 
53
  TEN is a collection of open-source projects for building real-time, multimodal conversational voice agents. It includes [ TEN Framework ](https://github.com/ten-framework/ten-framework), [ TEN VAD ](https://github.com/ten-framework/ten-vad), [ TEN Turn Detection ](https://github.com/ten-framework/ten-turn-detection), TEN Agent, TMAN Designer, and [ TEN Portal ](https://github.com/ten-framework/portal), all fully open-source.
54
 
55
- <br>
56
 
57
  | Community Channel | Purpose |
58
  | ---------------- | ------- |
@@ -62,7 +59,6 @@ TEN is a collection of open-source projects for building real-time, multimodal c
62
  | [![Hugging Face Space](https://img.shields.io/badge/Hugging%20Face-TEN%20Framework-yellow?style=flat&logo=huggingface)](https://huggingface.co/TEN-framework) | Join our Hugging Face community to explore our spaces and models |
63
  | [![WeChat](https://img.shields.io/badge/TEN_Framework-WeChat_Group-%2307C160?logo=wechat&labelColor=darkgreen&color=gray)](https://github.com/TEN-framework/ten-agent/discussions/170) | Join our WeChat group for Chinese community discussions |
64
 
65
- <br>
66
 
67
  > \[!IMPORTANT]
68
  >
@@ -70,11 +66,9 @@ TEN is a collection of open-source projects for building real-time, multimodal c
70
  >
71
  > Get instant notifications for new releases and updates. Your support helps us grow and improve TEN!
72
 
73
- <br>
74
 
75
  ![TEN star us gif](https://github.com/user-attachments/assets/eeebe996-8c14-4bf7-82ae-f1a1f7e30705)
76
 
77
- <br>
78
 
79
  ## TEN Hugging Face Space
80
 
@@ -82,13 +76,11 @@ TEN is a collection of open-source projects for building real-time, multimodal c
82
 
83
  You are more than welcome to [Visit TEN Hugging Face Space](https://huggingface.co/spaces/TEN-framework/ten-agent-demo) to try VAD and Turn Detection together.
84
 
85
- <br>
86
 
87
  ## **Introduction**
88
  **TEN VAD** is a real-time voice activity detection system designed for enterprise use, providing accurate frame-level speech activity detection. It shows superior precision compared to both WebRTC VAD and Silero VAD, which are commonly used in the industry. Additionally, TEN VAD offers lower computational complexity and reduced memory usage compared to Silero VAD. Meanwhile, the architecture's temporal efficiency enables rapid voice activity detection, significantly reducing end-to-end response and turn detection latency in conversational AI systems.
89
 
90
 
91
- <br>
92
 
93
  ## **Key Features**
94
 
@@ -96,7 +88,6 @@ You are more than welcome to [Visit TEN Hugging Face Space](https://huggingface.
96
 
97
  The precision-recall curves comparing the performance of WebRTC VAD (pitch-based), Silero VAD, and TEN VAD are shown below. The evaluation is conducted on the precisely manually annotated testset. The audio files are from librispeech, gigaspeech, DNS Challenge etc. As demonstrated, TEN VAD achieves the best performance. Additionally, cross-validation experiments conducted on large internal real-world datasets demonstrate the reproducibility of these findings. The **testset with annotated labels** is released in directory "testset" of this repository.
98
 
99
- <br>
100
 
101
  <div style="text-align:">
102
  <img src="./examples/images/PR_Curves_testset.png" width="800">
@@ -108,14 +99,12 @@ Note that the default threshold of 0.5 is used to generate binary speech indicat
108
  cd ./examples
109
  python plot_pr_curves.py
110
  ```
111
- <br>
112
 
113
  ### **2. Agent-Friendly:**
114
  As illustrated in the figure below, TEN VAD rapidly detects speech-to-non-speech transitions, whereas Silero VAD suffers from a delay of several hundred milliseconds, resulting in increased end-to-end latency in human-agent interaction systems. In addition, as demonstrated in the 6.5s-7.0s audio segment, Silero VAD fails to identify short silent durations between adjacent speech segments.
115
  <div style="text-align:">
116
  <img src="./examples/images/Agent-Friendly-image.png" width="800">
117
  </div>
118
- <br>
119
 
120
  ### **3. Lightweight:**
121
  We evaluated the RTF (Real-Time Factor) across five distinct platforms, each equipped with varying CPUs. TEN VAD demonstrates much lower computational complexity and smaller library size than Silero VAD.
@@ -126,7 +115,6 @@ We evaluated the RTF (Real-Time Factor) across five distinct platforms, each equ
126
  <th align="center" rowspan="2" valign="middle"> CPU </th>
127
  <th align="center" colspan="2"> RTF </th>
128
  <th align="center" colspan="2"> Lib Size </th>
129
-
130
  </tr>
131
  <tr>
132
  <th align="center" style="white-space: nowrap;"> TEN VAD </th>
@@ -138,16 +126,16 @@ We evaluated the RTF (Real-Time Factor) across five distinct platforms, each equ
138
  <th align="center" rowspan="3"> Linux </th>
139
  <td style="white-space: nowrap;"> AMD Ryzen 9 5900X 12-Core </td>
140
  <td align="center"> 0.0150 </td>
141
- <td align="center" rowspan="2" valign="middle"> / </td>
142
- <td align="center" rowspan="3" valign="middle"> 306KB </td>
143
- <td align="center" rowspan="10" style="white-space: nowrap;" valign="middle"> 2.16MB(JIT) / 2.22MB(ONNX) </td>
144
  </tr>
145
  <tr>
146
- <td style="white-space: nowrap;"> Intel(R) Xeon(R) Platinum 8253 </td>
147
  <td align="center"> 0.0136 </td>
148
  </tr>
149
  <tr>
150
- <td style="white-space: nowrap;"> Intel(R) Xeon(R) Gold 6348 CPU @ 2.60GHz </td>
151
  <td align="center"> 0.0086 </td>
152
  <td align="center"> 0.0127 </td>
153
  </tr>
@@ -155,7 +143,7 @@ We evaluated the RTF (Real-Time Factor) across five distinct platforms, each equ
155
  <th align="center"> Windows </th>
156
  <td> Intel i7-10710U </td>
157
  <td align="center"> 0.0150 </td>
158
- <td align="center" rowspan="7" valign="middle"> / </td>
159
  <td align="center" style="white-space: nowrap;"> 464KB(x86) / 508KB(x64) </td>
160
  </tr>
161
  <tr>
@@ -164,17 +152,11 @@ We evaluated the RTF (Real-Time Factor) across five distinct platforms, each equ
164
  <td align="center"> 0.0160 </td>
165
  <td align="center"> 731KB </td>
166
  </tr>
167
- <tr>
168
- <th align="center"> Web </th>
169
- <td> macOS(M1) </td>
170
- <td align="center"> 0.010 </td>
171
- <td align="center"> 277KB </td>
172
- </tr>
173
  <tr>
174
  <th align="center" rowspan="2"> Android </th>
175
  <td> Galaxy J6+ (32bit, 425) </td>
176
  <td align="center"> 0.0570 </td>
177
- <td align="center" rowspan="2" style="white-space: nowrap;"> 373KB(v7a) / 532KB(v8a)</td>
178
  </tr>
179
  <tr>
180
  <td> Oppo A3s (450) </td>
@@ -184,31 +166,31 @@ We evaluated the RTF (Real-Time Factor) across five distinct platforms, each equ
184
  <th align="center" rowspan="2"> iOS </th>
185
  <td> iPhone6 (A8) </td>
186
  <td align="center"> 0.0210 </td>
187
- <td align="center" rowspan="2"> 320KB</td>
188
  </tr>
189
  <tr>
190
  <td> iPhone8 (A11) </td>
191
  <td align="center"> 0.0050 </td>
192
  </tr>
193
  </table>
194
- <br>
 
 
 
 
 
195
 
196
  ### **4. Multiple programming languages and platforms:**
197
  TEN VAD provides cross-platform C compatibility across five operating systems (Linux x64, Windows, macOS, Android, iOS), with Python bindings optimized for Linux x64, with wasm for Web.
198
- <br>
199
- <br>
200
 
201
 
202
  ### **5. Supproted sampling rate and hop size:**
203
  TEN VAD operates on 16kHz audio input with configurable hop sizes (optimized frame configurations: 160/256 samples=10/16ms). Other sampling rates must be resampled to 16kHz.
204
- <br>
205
- <br>
206
 
207
  ## **Installation**
208
  ```
209
- git clone https://github.com/TEN-framework/ten-vad.git
210
  ```
211
- <br>
212
 
213
  ## **Quick Start**
214
  The project supports five major platforms with dynamic library linking.
@@ -226,7 +208,7 @@ The project supports five major platforms with dynamic library linking.
226
  <td align="center"> libten_vad.so </td>
227
  <td align="center"> x64 </td>
228
  <td align="center"> Python, C </td>
229
- <td rowspan="6">ten_vad.h <br> ten_vad.py <br> ten_vad.js</td>
230
  <td> </td>
231
  </tr>
232
  <tr>
@@ -243,13 +225,6 @@ The project supports five major platforms with dynamic library linking.
243
  <td align="center"> C </td>
244
  <td> </td>
245
  </tr>
246
- <tr>
247
- <th align="center"> Web </th>
248
- <td align="center"> ten_vad.wasm </td>
249
- <td align="center"> / </td>
250
- <td align="center"> JS </td>
251
- <td> </td>
252
- </tr>
253
  <tr>
254
  <th align="center"> Android </th>
255
  <td align="center"> libten_vad.so </td>
@@ -259,14 +234,12 @@ The project supports five major platforms with dynamic library linking.
259
  </tr>
260
  <tr>
261
  <th align="center"> iOS </th>
262
- <td align="center"> ten_vad.framework </td>
263
- <td align="center"> arm64 </td>
264
  <td align="center"> C </td>
265
  <td> 1. not simulator <br> 2. not iPad </td>
266
  </tr>
267
-
268
  </table>
269
- <br>
270
 
271
  ### **Python Usage**
272
  #### **1. Linux**
@@ -321,7 +294,7 @@ cd ./examples
321
  ```
322
  python test.py s0724-s0730.wav out.txt
323
  ```
324
- <br>
325
 
326
  ##### **By using pip:**
327
 
@@ -336,7 +309,7 @@ pip install -U --force-reinstall -v git+https://github.com/TEN-framework/ten-vad
336
  ```
337
  from ten_vad import TenVad
338
  ```
339
- <br>
340
 
341
  ### **JS Usage**
342
 
@@ -350,7 +323,7 @@ from ten_vad import TenVad
350
  1) cd ./examples
351
  2) node test_node.js s0724-s0730.wav out.txt
352
  ```
353
- <br>
354
 
355
  ### **C Usage**
356
  #### **Build Scripts**
@@ -380,7 +353,7 @@ Runtime library path configuration:
380
  - Run demo with sample audio s0724-s0730.wav
381
  - Processed results saved to out.txt
382
 
383
- <br>
384
 
385
  The detailed usage methods of each platform are as follows <br>
386
 
@@ -410,7 +383,6 @@ You have to download the **onnxruntime** packages from the [official website](ht
410
  ```
411
  Note: If executing the onnx demo from a different directory than the one used when running build-and-deploy-linux.sh, ensure to create a symbolic link to src/onnx_model/ to prevent ONNX model file loading failures.
412
 
413
- <br>
414
 
415
  #### **2. Windows**
416
  ##### **Requirements**
@@ -426,7 +398,7 @@ Note: If executing the onnx demo from a different directory than the one used wh
426
  - Visual Studio version (default: 2019)
427
  3) ./build-and-deploy-windows.bat
428
  ```
429
- <br>
430
 
431
  #### **3. macOS**
432
  ##### **Requirements**
@@ -441,7 +413,7 @@ Note: If executing the onnx demo from a different directory than the one used wh
441
  - Alternative: x86_64 (Intel)
442
  3) ./build-and-deploy-mac.sh
443
  ```
444
- <br>
445
 
446
  #### **4. Android**
447
  ##### **Requirements**
@@ -458,7 +430,7 @@ Note: If executing the onnx demo from a different directory than the one used wh
458
  - Toolchain: aarch64-linux-android-clang (default) or custom NDK toolchain
459
  4) ./build-and-deploy-android.sh
460
  ```
461
- <br>
462
 
463
  #### **5. iOS**
464
  ##### **Requirements**
@@ -510,7 +482,7 @@ cd ./examples
510
 
511
  3.5. Build in Xcode and run demo on your device.
512
 
513
- <br>
514
 
515
  ## TEN Ecosystem
516
 
@@ -531,7 +503,6 @@ cd ./examples
531
 
532
  Most questions can be answered by using DeepWiki, it is fast, intutive to use and supports multiple languages.
533
 
534
- <br>
535
 
536
  ## **Citations**
537
  ```
@@ -545,14 +516,13 @@ Most questions can be answered by using DeepWiki, it is fast, intutive to use an
545
  email = {[email protected]}
546
  }
547
  ```
548
- <br>
549
 
550
  ## License
551
 
552
  This project is Apache 2.0 with additional conditions licensed. Refer to the "LICENSE" file in the root directory for detailed information. Note that `pitch_est.cc` contains modified code derived from [LPCNet](https://github.com/xiph/LPCNet), which is [BSD-2-Clause](https://spdx.org/licenses/BSD-2-Clause.html) and [BSD-3-Clause](https://spdx.org/licenses/BSD-3-Clause.html) licensed, refer to the NOTICES file in the root directory for detailed information.
553
 
554
 
555
- <br>
556
 
557
 
558
  [back-to-top]: https://img.shields.io/badge/-Back_to_top-gray?style=flat-square
 
11
  [![GitHub forks](https://img.shields.io/github/forks/TEN-framework/ten-vad?style=social&label=Fork)](https://GitHub.com/TEN-framework/ten-vad/network/?WT.mc_id=academic-105485-koreyst)
12
  [![GitHub stars](https://img.shields.io/github/stars/TEN-framework/ten-vad?style=social&label=Star)](https://GitHub.com/TEN-framework/ten-vad/stargazers/?WT.mc_id=academic-105485-koreyst)
13
 
 
14
 
15
  *Latest News* 🔥
16
  - [2025/06] We **finally** released and **open-sourced** the **ONNX** model and the corresponding **preprocessing code**! Now you can deploy **TEN VAD** on **any platform** and **any hardware architecture**!
17
  - [2025/06] We are excited to announce the release of **WASM+JS** for Web WASM Support.
18
+
19
 
20
  ## Table of Contents
21
 
 
45
  - [Citations](#citations)
46
  - [License](#license)
47
 
 
48
 
49
  ## Welcome to TEN
50
 
51
  TEN is a collection of open-source projects for building real-time, multimodal conversational voice agents. It includes [ TEN Framework ](https://github.com/ten-framework/ten-framework), [ TEN VAD ](https://github.com/ten-framework/ten-vad), [ TEN Turn Detection ](https://github.com/ten-framework/ten-turn-detection), TEN Agent, TMAN Designer, and [ TEN Portal ](https://github.com/ten-framework/portal), all fully open-source.
52
 
 
53
 
54
  | Community Channel | Purpose |
55
  | ---------------- | ------- |
 
59
  | [![Hugging Face Space](https://img.shields.io/badge/Hugging%20Face-TEN%20Framework-yellow?style=flat&logo=huggingface)](https://huggingface.co/TEN-framework) | Join our Hugging Face community to explore our spaces and models |
60
  | [![WeChat](https://img.shields.io/badge/TEN_Framework-WeChat_Group-%2307C160?logo=wechat&labelColor=darkgreen&color=gray)](https://github.com/TEN-framework/ten-agent/discussions/170) | Join our WeChat group for Chinese community discussions |
61
 
 
62
 
63
  > \[!IMPORTANT]
64
  >
 
66
  >
67
  > Get instant notifications for new releases and updates. Your support helps us grow and improve TEN!
68
 
 
69
 
70
  ![TEN star us gif](https://github.com/user-attachments/assets/eeebe996-8c14-4bf7-82ae-f1a1f7e30705)
71
 
 
72
 
73
  ## TEN Hugging Face Space
74
 
 
76
 
77
  You are more than welcome to [Visit TEN Hugging Face Space](https://huggingface.co/spaces/TEN-framework/ten-agent-demo) to try VAD and Turn Detection together.
78
 
 
79
 
80
  ## **Introduction**
81
  **TEN VAD** is a real-time voice activity detection system designed for enterprise use, providing accurate frame-level speech activity detection. It shows superior precision compared to both WebRTC VAD and Silero VAD, which are commonly used in the industry. Additionally, TEN VAD offers lower computational complexity and reduced memory usage compared to Silero VAD. Meanwhile, the architecture's temporal efficiency enables rapid voice activity detection, significantly reducing end-to-end response and turn detection latency in conversational AI systems.
82
 
83
 
 
84
 
85
  ## **Key Features**
86
 
 
88
 
89
  The precision-recall curves comparing the performance of WebRTC VAD (pitch-based), Silero VAD, and TEN VAD are shown below. The evaluation is conducted on the precisely manually annotated testset. The audio files are from librispeech, gigaspeech, DNS Challenge etc. As demonstrated, TEN VAD achieves the best performance. Additionally, cross-validation experiments conducted on large internal real-world datasets demonstrate the reproducibility of these findings. The **testset with annotated labels** is released in directory "testset" of this repository.
90
 
 
91
 
92
  <div style="text-align:">
93
  <img src="./examples/images/PR_Curves_testset.png" width="800">
 
99
  cd ./examples
100
  python plot_pr_curves.py
101
  ```
 
102
 
103
  ### **2. Agent-Friendly:**
104
  As illustrated in the figure below, TEN VAD rapidly detects speech-to-non-speech transitions, whereas Silero VAD suffers from a delay of several hundred milliseconds, resulting in increased end-to-end latency in human-agent interaction systems. In addition, as demonstrated in the 6.5s-7.0s audio segment, Silero VAD fails to identify short silent durations between adjacent speech segments.
105
  <div style="text-align:">
106
  <img src="./examples/images/Agent-Friendly-image.png" width="800">
107
  </div>
 
108
 
109
  ### **3. Lightweight:**
110
  We evaluated the RTF (Real-Time Factor) across five distinct platforms, each equipped with varying CPUs. TEN VAD demonstrates much lower computational complexity and smaller library size than Silero VAD.
 
115
  <th align="center" rowspan="2" valign="middle"> CPU </th>
116
  <th align="center" colspan="2"> RTF </th>
117
  <th align="center" colspan="2"> Lib Size </th>
 
118
  </tr>
119
  <tr>
120
  <th align="center" style="white-space: nowrap;"> TEN VAD </th>
 
126
  <th align="center" rowspan="3"> Linux </th>
127
  <td style="white-space: nowrap;"> AMD Ryzen 9 5900X 12-Core </td>
128
  <td align="center"> 0.0150 </td>
129
+ <td rowspan="2" style="text-align: center; vertical-align: middle;"> / </td>
130
+ <td rowspan="3" style="text-align: center; vertical-align: middle;"> 306KB </td>
131
+ <td rowspan="9" style="text-align: center; vertical-align: middle;"> 2.16MB(JIT) / 2.22MB(ONNX) </td>
132
  </tr>
133
  <tr>
134
+ <td > Intel(R) Xeon(R) Platinum 8253 </td>
135
  <td align="center"> 0.0136 </td>
136
  </tr>
137
  <tr>
138
+ <td > Intel(R) Xeon(R) Gold 6348 CPU @ 2.60GHz </td>
139
  <td align="center"> 0.0086 </td>
140
  <td align="center"> 0.0127 </td>
141
  </tr>
 
143
  <th align="center"> Windows </th>
144
  <td> Intel i7-10710U </td>
145
  <td align="center"> 0.0150 </td>
146
+ <td rowspan="6" style="text-align: center; vertical-align: middle;"> / </td>
147
  <td align="center" style="white-space: nowrap;"> 464KB(x86) / 508KB(x64) </td>
148
  </tr>
149
  <tr>
 
152
  <td align="center"> 0.0160 </td>
153
  <td align="center"> 731KB </td>
154
  </tr>
 
 
 
 
 
 
155
  <tr>
156
  <th align="center" rowspan="2"> Android </th>
157
  <td> Galaxy J6+ (32bit, 425) </td>
158
  <td align="center"> 0.0570 </td>
159
+ <td rowspan="2" style="text-align: center; vertical-align: middle;"> 373KB(v7a) / 532KB(v8a)</td>
160
  </tr>
161
  <tr>
162
  <td> Oppo A3s (450) </td>
 
166
  <th align="center" rowspan="2"> iOS </th>
167
  <td> iPhone6 (A8) </td>
168
  <td align="center"> 0.0210 </td>
169
+ <td rowspan="2" style="text-align: center; vertical-align: middle;"> 320KB</td>
170
  </tr>
171
  <tr>
172
  <td> iPhone8 (A11) </td>
173
  <td align="center"> 0.0050 </td>
174
  </tr>
175
  </table>
176
+ <style>
177
+ th, td {
178
+ border: 1px solid #ddd;
179
+ padding: 8px;
180
+ }
181
+ </style>
182
 
183
  ### **4. Multiple programming languages and platforms:**
184
  TEN VAD provides cross-platform C compatibility across five operating systems (Linux x64, Windows, macOS, Android, iOS), with Python bindings optimized for Linux x64, with wasm for Web.
 
 
185
 
186
 
187
  ### **5. Supproted sampling rate and hop size:**
188
  TEN VAD operates on 16kHz audio input with configurable hop sizes (optimized frame configurations: 160/256 samples=10/16ms). Other sampling rates must be resampled to 16kHz.
 
 
189
 
190
  ## **Installation**
191
  ```
192
+ git clone https://huggingface.co/TEN-framework/ten-vad
193
  ```
 
194
 
195
  ## **Quick Start**
196
  The project supports five major platforms with dynamic library linking.
 
208
  <td align="center"> libten_vad.so </td>
209
  <td align="center"> x64 </td>
210
  <td align="center"> Python, C </td>
211
+ <td rowspan="5" style="text-align: center; vertical-align: middle;">ten_vad.h <br> ten_vad.py</td>
212
  <td> </td>
213
  </tr>
214
  <tr>
 
225
  <td align="center"> C </td>
226
  <td> </td>
227
  </tr>
 
 
 
 
 
 
 
228
  <tr>
229
  <th align="center"> Android </th>
230
  <td align="center"> libten_vad.so </td>
 
234
  </tr>
235
  <tr>
236
  <th align="center"> iOS </th>
237
+ <td align="center" style="text-align: center; vertical-align: middle;"> ten_vad.framework </td>
238
+ <td align="center" style="text-align: center; vertical-align: middle;"> arm64 </td>
239
  <td align="center"> C </td>
240
  <td> 1. not simulator <br> 2. not iPad </td>
241
  </tr>
 
242
  </table>
 
243
 
244
  ### **Python Usage**
245
  #### **1. Linux**
 
294
  ```
295
  python test.py s0724-s0730.wav out.txt
296
  ```
297
+
298
 
299
  ##### **By using pip:**
300
 
 
309
  ```
310
  from ten_vad import TenVad
311
  ```
312
+
313
 
314
  ### **JS Usage**
315
 
 
323
  1) cd ./examples
324
  2) node test_node.js s0724-s0730.wav out.txt
325
  ```
326
+
327
 
328
  ### **C Usage**
329
  #### **Build Scripts**
 
353
  - Run demo with sample audio s0724-s0730.wav
354
  - Processed results saved to out.txt
355
 
356
+
357
 
358
  The detailed usage methods of each platform are as follows <br>
359
 
 
383
  ```
384
  Note: If executing the onnx demo from a different directory than the one used when running build-and-deploy-linux.sh, ensure to create a symbolic link to src/onnx_model/ to prevent ONNX model file loading failures.
385
 
 
386
 
387
  #### **2. Windows**
388
  ##### **Requirements**
 
398
  - Visual Studio version (default: 2019)
399
  3) ./build-and-deploy-windows.bat
400
  ```
401
+
402
 
403
  #### **3. macOS**
404
  ##### **Requirements**
 
413
  - Alternative: x86_64 (Intel)
414
  3) ./build-and-deploy-mac.sh
415
  ```
416
+
417
 
418
  #### **4. Android**
419
  ##### **Requirements**
 
430
  - Toolchain: aarch64-linux-android-clang (default) or custom NDK toolchain
431
  4) ./build-and-deploy-android.sh
432
  ```
433
+
434
 
435
  #### **5. iOS**
436
  ##### **Requirements**
 
482
 
483
  3.5. Build in Xcode and run demo on your device.
484
 
485
+
486
 
487
  ## TEN Ecosystem
488
 
 
503
 
504
  Most questions can be answered by using DeepWiki, it is fast, intutive to use and supports multiple languages.
505
 
 
506
 
507
  ## **Citations**
508
  ```
 
516
  email = {[email protected]}
517
  }
518
  ```
519
+
520
 
521
  ## License
522
 
523
  This project is Apache 2.0 with additional conditions licensed. Refer to the "LICENSE" file in the root directory for detailed information. Note that `pitch_est.cc` contains modified code derived from [LPCNet](https://github.com/xiph/LPCNet), which is [BSD-2-Clause](https://spdx.org/licenses/BSD-2-Clause.html) and [BSD-3-Clause](https://spdx.org/licenses/BSD-3-Clause.html) licensed, refer to the NOTICES file in the root directory for detailed information.
524
 
525
 
 
526
 
527
 
528
  [back-to-top]: https://img.shields.io/badge/-Back_to_top-gray?style=flat-square