Built with Axolotl

See axolotl config

axolotl version: 0.6.0

base_model: trl-internal-testing/tiny-random-LlamaForCausalLM
batch_size: 128
bf16: true
chat_template: tokenizer_default_fallback_alpaca
datasets:
- format: custom
  path: argilla/databricks-dolly-15k-curated-en
  type:
    field_input: original-instruction
    field_instruction: original-instruction
    field_output: original-response
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
device_map: auto
eval_sample_packing: false
eval_steps: 20
flash_attention: true
gradient_checkpointing: true
group_by_length: true
hub_model_id: SystemAdmin123/tiny-random-LlamaForCausalLM
hub_strategy: checkpoint
learning_rate: 0.0002
logging_steps: 10
lr_scheduler: cosine
max_steps: 10000
micro_batch_size: 32
model_type: AutoModelForCausalLM
num_epochs: 100
optimizer: adamw_bnb_8bit
output_dir: /root/.sn56/axolotl/tmp/tiny-random-LlamaForCausalLM
pad_to_sequence_len: true
resize_token_embeddings_to_32x: false
sample_packing: true
save_steps: 20
save_total_limit: 1
sequence_len: 2048
tokenizer_type: LlamaTokenizerFast
torch_dtype: bf16
training_args_kwargs:
  hub_private_repo: true
trust_remote_code: true
val_set_size: 0.1
wandb_entity: ''
wandb_mode: online
wandb_name: trl-internal-testing/tiny-random-LlamaForCausalLM-argilla/databricks-dolly-15k-curated-en
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: default
warmup_ratio: 0.05

tiny-random-LlamaForCausalLM

This model is a fine-tuned version of trl-internal-testing/tiny-random-LlamaForCausalLM on the argilla/databricks-dolly-15k-curated-en dataset. It achieves the following results on the evaluation set:

  • Loss: 10.1817

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • total_train_batch_size: 128
  • total_eval_batch_size: 128
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 5
  • training_steps: 100

Training results

Training Loss Epoch Step Validation Loss
No log 0.1667 1 10.3764
10.3632 3.3333 20 10.3538
10.3073 6.6667 40 10.2840
10.2203 10.0 60 10.2082
10.1812 13.3333 80 10.1828
10.1767 16.6667 100 10.1817

Framework versions

  • Transformers 4.48.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
4
Safetensors
Model size
1.03M params
Tensor type
BF16
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for SystemAdmin123/tiny-random-LlamaForCausalLM

Finetuned
(13)
this model

Dataset used to train SystemAdmin123/tiny-random-LlamaForCausalLM