File size: 18,183 Bytes
632262c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
330eb8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
632262c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
330eb8b
 
 
 
632262c
 
 
 
 
 
 
330eb8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
632262c
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
---
license: cc-by-nc-4.0
base_model: MCG-NJU/videomae-small-finetuned-kinetics
tags:
- generated_from_trainer
metrics:
- accuracy
- matthews_correlation
model-index:
- name: videomae-small-finetuned-kinetics-finetuned-SNchunks-5c-a40
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# videomae-small-finetuned-kinetics-finetuned-SNchunks-5c-a40

This model is a fine-tuned version of [MCG-NJU/videomae-small-finetuned-kinetics](https://huggingface.co/MCG-NJU/videomae-small-finetuned-kinetics) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7599
- Accuracy: 0.7159
- Balanced Accuracy: 0.7157
- Matthews Correlation: 0.6515
- Confusion Matrix: [[1135   54   69   73   41]
 [ 333  828   92   50   68]
 [ 161   23 1008  165   13]
 [ 306   34  292  705   27]
 [ 102   17   16    9 1226]]
- 0 Ball out of play: {'precision': 0.5571919489445263, 'recall': 0.827259475218659, 'f1-score': 0.665884423584629, 'support': 1372.0}
- Precision 0: 0.5572
- Recall 0: 0.8273
- F1-score 0: 0.6659
- Support 0: 1372.0
- 1 Foul: {'precision': 0.8661087866108786, 'recall': 0.6039387308533917, 'f1-score': 0.7116458960034379, 'support': 1371.0}
- Precision 1: 0.8661
- Recall 1: 0.6039
- F1-score 1: 0.7116
- Support 1: 1371.0
- 2 Goal: {'precision': 0.6824644549763034, 'recall': 0.7357664233576642, 'f1-score': 0.7081138040042149, 'support': 1370.0}
- Precision 2: 0.6825
- Recall 2: 0.7358
- F1-score 2: 0.7081
- Support 2: 1370.0
- 3 Shots: {'precision': 0.7035928143712575, 'recall': 0.5168621700879765, 'f1-score': 0.5959425190194421, 'support': 1364.0}
- Precision 3: 0.7036
- Recall 3: 0.5169
- F1-score 3: 0.5959
- Support 3: 1364.0
- 4 Throw-in: {'precision': 0.8916363636363637, 'recall': 0.8948905109489051, 'f1-score': 0.8932604735883425, 'support': 1370.0}
- Precision 4: 0.8916
- Recall 4: 0.8949
- F1-score 4: 0.8933
- Support 4: 1370.0
- Precision Macro avg: 0.7402
- Recall Macro avg: 0.7157
- F1-score Macro avg: 0.7150
- Support Macro avg: 6847.0
- Precision Weighted avg: 0.7402
- Recall Weighted avg: 0.7159
- F1-score Weighted avg: 0.7151
- Support Weighted avg: 6847.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Balanced Accuracy | Matthews Correlation | Confusion Matrix                                                                                                                             | 0 Ball out of play                                                                                                 | Precision 0 | Recall 0 | F1-score 0 | Support 0 | 1 Foul                                                                                                              | Precision 1 | Recall 1 | F1-score 1 | Support 1 | 2 Goal                                                                                                             | Precision 2 | Recall 2 | F1-score 2 | Support 2 | 3 Shots                                                                                                              | Precision 3 | Recall 3 | F1-score 3 | Support 3 | 4 Throw-in                                                                                                         | Precision 4 | Recall 4 | F1-score 4 | Support 4 | Precision Macro avg | Recall Macro avg | F1-score Macro avg | Support Macro avg | Precision Weighted avg | Recall Weighted avg | F1-score Weighted avg | Support Weighted avg |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------------:|:--------------------:|:--------------------------------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:-----------:|:--------:|:----------:|:---------:|:-------------------------------------------------------------------------------------------------------------------:|:-----------:|:--------:|:----------:|:---------:|:------------------------------------------------------------------------------------------------------------------:|:-----------:|:--------:|:----------:|:---------:|:--------------------------------------------------------------------------------------------------------------------:|:-----------:|:--------:|:----------:|:---------:|:------------------------------------------------------------------------------------------------------------------:|:-----------:|:--------:|:----------:|:---------:|:-------------------:|:----------------:|:------------------:|:-----------------:|:----------------------:|:-------------------:|:---------------------:|:--------------------:|
| 0.7825        | 1.0   | 428  | 0.9234          | 0.6207   | 0.6205            | 0.5371               | [[ 961   43  100   80  188]
 [ 461  597  105   35  173]
 [ 195   22  953  167   33]
 [ 454   33  354  464   59]
 [  65    7   19    4 1275]] | {'precision': 0.4499063670411985, 'recall': 0.7004373177842566, 'f1-score': 0.5478905359179019, 'support': 1372.0} | 0.4499      | 0.7004   | 0.5479     | 1372.0    | {'precision': 0.8504273504273504, 'recall': 0.43544857768052514, 'f1-score': 0.5759768451519537, 'support': 1371.0} | 0.8504      | 0.4354   | 0.5760     | 1371.0    | {'precision': 0.6224689745264533, 'recall': 0.6956204379562044, 'f1-score': 0.6570148224750086, 'support': 1370.0} | 0.6225      | 0.6956   | 0.6570     | 1370.0    | {'precision': 0.6186666666666667, 'recall': 0.34017595307917886, 'f1-score': 0.4389782403027436, 'support': 1364.0}  | 0.6187      | 0.3402   | 0.4390     | 1364.0    | {'precision': 0.7378472222222222, 'recall': 0.9306569343065694, 'f1-score': 0.8231116849580373, 'support': 1370.0} | 0.7378      | 0.9307   | 0.8231     | 1370.0    | 0.6559              | 0.6205           | 0.6086             | 6847.0            | 0.6559                 | 0.6207              | 0.6087                | 6847.0               |
| 0.8655        | 2.0   | 856  | 0.8769          | 0.6648   | 0.6646            | 0.5874               | [[1007   78   82   82  123]
 [ 328  794   78   54  117]
 [ 162   36  972  182   18]
 [ 398   50  313  536   67]
 [  74   15   30    8 1243]] | {'precision': 0.5114271203656678, 'recall': 0.7339650145772595, 'f1-score': 0.6028135288835678, 'support': 1372.0} | 0.5114      | 0.7340   | 0.6028     | 1372.0    | {'precision': 0.816032887975334, 'recall': 0.5791393143690736, 'f1-score': 0.6774744027303755, 'support': 1371.0}   | 0.8160      | 0.5791   | 0.6775     | 1371.0    | {'precision': 0.6589830508474577, 'recall': 0.7094890510948905, 'f1-score': 0.6833040421792619, 'support': 1370.0} | 0.6590      | 0.7095   | 0.6833     | 1370.0    | {'precision': 0.6218097447795824, 'recall': 0.39296187683284456, 'f1-score': 0.48158131176999097, 'support': 1364.0} | 0.6218      | 0.3930   | 0.4816     | 1364.0    | {'precision': 0.7927295918367347, 'recall': 0.9072992700729927, 'f1-score': 0.8461538461538461, 'support': 1370.0} | 0.7927      | 0.9073   | 0.8462     | 1370.0    | 0.6802              | 0.6646           | 0.6583             | 6847.0            | 0.6802                 | 0.6648              | 0.6584                | 6847.0               |
| 0.8065        | 3.0   | 1284 | 0.7639          | 0.7037   | 0.7035            | 0.6356               | [[1046   89  119   82   36]
 [ 271  906  104   47   43]
 [ 106   21 1116  126    1]
 [ 266   35  408  646    9]
 [ 141   51   60   14 1104]] | {'precision': 0.571584699453552, 'recall': 0.7623906705539358, 'f1-score': 0.6533416614615865, 'support': 1372.0}  | 0.5716      | 0.7624   | 0.6533     | 1372.0    | {'precision': 0.822141560798548, 'recall': 0.6608315098468271, 'f1-score': 0.7327133036797413, 'support': 1371.0}   | 0.8221      | 0.6608   | 0.7327     | 1371.0    | {'precision': 0.6175982291090205, 'recall': 0.8145985401459854, 'f1-score': 0.7025495750708216, 'support': 1370.0} | 0.6176      | 0.8146   | 0.7025     | 1370.0    | {'precision': 0.7060109289617487, 'recall': 0.4736070381231672, 'f1-score': 0.566915313734094, 'support': 1364.0}    | 0.7060      | 0.4736   | 0.5669     | 1364.0    | {'precision': 0.9253981559094719, 'recall': 0.8058394160583942, 'f1-score': 0.8614904408895825, 'support': 1370.0} | 0.9254      | 0.8058   | 0.8615     | 1370.0    | 0.7285              | 0.7035           | 0.7034             | 6847.0            | 0.7285                 | 0.7037              | 0.7035                | 6847.0               |
| 0.6598        | 4.0   | 1712 | 0.7694          | 0.6994   | 0.6992            | 0.6319               | [[1106   42   82   80   62]
 [ 379  735  117   60   80]
 [ 133   17 1053  159    8]
 [ 293   28  340  671   32]
 [  98   16   21   11 1224]] | {'precision': 0.5505226480836237, 'recall': 0.8061224489795918, 'f1-score': 0.6542443064182195, 'support': 1372.0} | 0.5505      | 0.8061   | 0.6542     | 1372.0    | {'precision': 0.8770883054892601, 'recall': 0.5361050328227571, 'f1-score': 0.6654594839293798, 'support': 1371.0}  | 0.8771      | 0.5361   | 0.6655     | 1371.0    | {'precision': 0.652820830750155, 'recall': 0.7686131386861313, 'f1-score': 0.7060006704659737, 'support': 1370.0}  | 0.6528      | 0.7686   | 0.7060     | 1370.0    | {'precision': 0.6839959225280327, 'recall': 0.49193548387096775, 'f1-score': 0.5722814498933901, 'support': 1364.0}  | 0.6840      | 0.4919   | 0.5723     | 1364.0    | {'precision': 0.8705547652916074, 'recall': 0.8934306569343066, 'f1-score': 0.8818443804034583, 'support': 1370.0} | 0.8706      | 0.8934   | 0.8818     | 1370.0    | 0.7270              | 0.6992           | 0.6960             | 6847.0            | 0.7270                 | 0.6994              | 0.6961                | 6847.0               |
| 0.5968        | 5.0   | 2140 | 0.7820          | 0.6991   | 0.6989            | 0.6335               | [[1140   50   77   59   46]
 [ 360  834   85   32   60]
 [ 186   26 1007  140   11]
 [ 384   56  293  593   38]
 [ 129   19    6    3 1213]] | {'precision': 0.5184174624829468, 'recall': 0.8309037900874635, 'f1-score': 0.6384766171940633, 'support': 1372.0} | 0.5184      | 0.8309   | 0.6385     | 1372.0    | {'precision': 0.8467005076142132, 'recall': 0.6083150984682714, 'f1-score': 0.7079796264855689, 'support': 1371.0}  | 0.8467      | 0.6083   | 0.7080     | 1371.0    | {'precision': 0.6859673024523161, 'recall': 0.7350364963503649, 'f1-score': 0.7096546863988723, 'support': 1370.0} | 0.6860      | 0.7350   | 0.7097     | 1370.0    | {'precision': 0.717049576783555, 'recall': 0.4347507331378299, 'f1-score': 0.5413053400273847, 'support': 1364.0}    | 0.7170      | 0.4348   | 0.5413     | 1364.0    | {'precision': 0.8866959064327485, 'recall': 0.8854014598540146, 'f1-score': 0.8860482103725348, 'support': 1370.0} | 0.8867      | 0.8854   | 0.8860     | 1370.0    | 0.7310              | 0.6989           | 0.6967             | 6847.0            | 0.7309                 | 0.6991              | 0.6968                | 6847.0               |
| 0.5675        | 6.0   | 2568 | 0.7603          | 0.7159   | 0.7157            | 0.6515               | [[1135   54   69   73   41]
 [ 333  828   92   50   68]
 [ 161   23 1008  165   13]
 [ 306   34  292  705   27]
 [ 102   17   16    9 1226]] | {'precision': 0.5571919489445263, 'recall': 0.827259475218659, 'f1-score': 0.665884423584629, 'support': 1372.0}   | 0.5572      | 0.8273   | 0.6659     | 1372.0    | {'precision': 0.8661087866108786, 'recall': 0.6039387308533917, 'f1-score': 0.7116458960034379, 'support': 1371.0}  | 0.8661      | 0.6039   | 0.7116     | 1371.0    | {'precision': 0.6824644549763034, 'recall': 0.7357664233576642, 'f1-score': 0.7081138040042149, 'support': 1370.0} | 0.6825      | 0.7358   | 0.7081     | 1370.0    | {'precision': 0.7035928143712575, 'recall': 0.5168621700879765, 'f1-score': 0.5959425190194421, 'support': 1364.0}   | 0.7036      | 0.5169   | 0.5959     | 1364.0    | {'precision': 0.8916363636363637, 'recall': 0.8948905109489051, 'f1-score': 0.8932604735883425, 'support': 1370.0} | 0.8916      | 0.8949   | 0.8933     | 1370.0    | 0.7402              | 0.7157           | 0.7150             | 6847.0            | 0.7402                 | 0.7159              | 0.7151                | 6847.0               |
| 0.4824        | 7.0   | 2996 | 0.8064          | 0.6958   | 0.6956            | 0.6308               | [[1178   37   62   69   26]
 [ 396  787   80   57   51]
 [ 188   14  993  172    3]
 [ 378   32  287  650   17]
 [ 173   16   17    8 1156]] | {'precision': 0.5092952875054042, 'recall': 0.858600583090379, 'f1-score': 0.639348710990502, 'support': 1372.0}   | 0.5093      | 0.8586   | 0.6393     | 1372.0    | {'precision': 0.8882618510158014, 'recall': 0.574033552151714, 'f1-score': 0.6973859105006646, 'support': 1371.0}   | 0.8883      | 0.5740   | 0.6974     | 1371.0    | {'precision': 0.6900625434329395, 'recall': 0.7248175182481752, 'f1-score': 0.7070131719473122, 'support': 1370.0} | 0.6901      | 0.7248   | 0.7070     | 1370.0    | {'precision': 0.6799163179916318, 'recall': 0.47653958944281527, 'f1-score': 0.560344827586207, 'support': 1364.0}   | 0.6799      | 0.4765   | 0.5603     | 1364.0    | {'precision': 0.922585794094174, 'recall': 0.8437956204379562, 'f1-score': 0.881433473122379, 'support': 1370.0}   | 0.9226      | 0.8438   | 0.8814     | 1370.0    | 0.7380              | 0.6956           | 0.6971             | 6847.0            | 0.7380                 | 0.6958              | 0.6972                | 6847.0               |
| 0.6574        | 8.0   | 3424 | 0.7998          | 0.7035   | 0.7033            | 0.6385               | [[1141   55   85   65   26]
 [ 341  827  113   50   40]
 [ 150   19 1084  113    4]
 [ 321   47  353  624   19]
 [ 166   32   25    6 1141]] | {'precision': 0.5384615384615384, 'recall': 0.8316326530612245, 'f1-score': 0.6536808937267259, 'support': 1372.0} | 0.5385      | 0.8316   | 0.6537     | 1372.0    | {'precision': 0.8438775510204082, 'recall': 0.6032093362509118, 'f1-score': 0.7035304125903871, 'support': 1371.0}  | 0.8439      | 0.6032   | 0.7035     | 1371.0    | {'precision': 0.653012048192771, 'recall': 0.7912408759124088, 'f1-score': 0.7155115511551154, 'support': 1370.0}  | 0.6530      | 0.7912   | 0.7155     | 1370.0    | {'precision': 0.7272727272727273, 'recall': 0.4574780058651026, 'f1-score': 0.5616561656165616, 'support': 1364.0}   | 0.7273      | 0.4575   | 0.5617     | 1364.0    | {'precision': 0.9276422764227642, 'recall': 0.8328467153284671, 'f1-score': 0.8776923076923077, 'support': 1370.0} | 0.9276      | 0.8328   | 0.8777     | 1370.0    | 0.7381              | 0.7033           | 0.7024             | 6847.0            | 0.7380                 | 0.7035              | 0.7025                | 6847.0               |
| 0.4709        | 9.0   | 3852 | 0.8032          | 0.7024   | 0.7021            | 0.6373               | [[1161   47   70   68   26]
 [ 365  794   98   62   52]
 [ 177   16 1019  155    3]
 [ 353   39  297  654   21]
 [ 149   19   16    5 1181]] | {'precision': 0.5265306122448979, 'recall': 0.8462099125364432, 'f1-score': 0.6491473301649426, 'support': 1372.0} | 0.5265      | 0.8462   | 0.6491     | 1372.0    | {'precision': 0.8677595628415301, 'recall': 0.5791393143690736, 'f1-score': 0.6946631671041119, 'support': 1371.0}  | 0.8678      | 0.5791   | 0.6947     | 1371.0    | {'precision': 0.6793333333333333, 'recall': 0.7437956204379562, 'f1-score': 0.7101045296167248, 'support': 1370.0} | 0.6793      | 0.7438   | 0.7101     | 1370.0    | {'precision': 0.6927966101694916, 'recall': 0.47947214076246336, 'f1-score': 0.5667244367417678, 'support': 1364.0}  | 0.6928      | 0.4795   | 0.5667     | 1364.0    | {'precision': 0.9204988308651598, 'recall': 0.862043795620438, 'f1-score': 0.8903128533735394, 'support': 1370.0}  | 0.9205      | 0.8620   | 0.8903     | 1370.0    | 0.7374              | 0.7021           | 0.7022             | 6847.0            | 0.7374                 | 0.7024              | 0.7023                | 6847.0               |
| 0.3689        | 10.0  | 4280 | 0.8093          | 0.7082   | 0.7079            | 0.6447               | [[1160   58   65   58   31]
 [ 343  852   86   40   50]
 [ 191   23 1015  136    5]
 [ 383   52  284  624   21]
 [ 130   24   13    5 1198]] | {'precision': 0.5256003624830086, 'recall': 0.8454810495626822, 'f1-score': 0.648225761385862, 'support': 1372.0}  | 0.5256      | 0.8455   | 0.6482     | 1372.0    | {'precision': 0.844400396432111, 'recall': 0.6214442013129103, 'f1-score': 0.7159663865546219, 'support': 1371.0}   | 0.8444      | 0.6214   | 0.7160     | 1371.0    | {'precision': 0.69377990430622, 'recall': 0.7408759124087592, 'f1-score': 0.7165548888104484, 'support': 1370.0}   | 0.6938      | 0.7409   | 0.7166     | 1370.0    | {'precision': 0.7230590961761297, 'recall': 0.4574780058651026, 'f1-score': 0.5603951504265828, 'support': 1364.0}   | 0.7231      | 0.4575   | 0.5604     | 1364.0    | {'precision': 0.918007662835249, 'recall': 0.8744525547445255, 'f1-score': 0.8957009345794392, 'support': 1370.0}  | 0.9180      | 0.8745   | 0.8957     | 1370.0    | 0.7410              | 0.7079           | 0.7074             | 6847.0            | 0.7409                 | 0.7082              | 0.7075                | 6847.0               |


### Framework versions

- Transformers 4.31.0
- Pytorch 2.0.1+git8bfa463
- Datasets 2.13.1
- Tokenizers 0.13.3