videomae-small-finetuned-kinetics-finetuned-SNchunks-5c-a40

This model is a fine-tuned version of MCG-NJU/videomae-small-finetuned-kinetics on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7599
  • Accuracy: 0.7159
  • Balanced Accuracy: 0.7157
  • Matthews Correlation: 0.6515
  • Confusion Matrix: [[1135 54 69 73 41] [ 333 828 92 50 68] [ 161 23 1008 165 13] [ 306 34 292 705 27] [ 102 17 16 9 1226]]
  • 0 Ball out of play: {'precision': 0.5571919489445263, 'recall': 0.827259475218659, 'f1-score': 0.665884423584629, 'support': 1372.0}
  • Precision 0: 0.5572
  • Recall 0: 0.8273
  • F1-score 0: 0.6659
  • Support 0: 1372.0
  • 1 Foul: {'precision': 0.8661087866108786, 'recall': 0.6039387308533917, 'f1-score': 0.7116458960034379, 'support': 1371.0}
  • Precision 1: 0.8661
  • Recall 1: 0.6039
  • F1-score 1: 0.7116
  • Support 1: 1371.0
  • 2 Goal: {'precision': 0.6824644549763034, 'recall': 0.7357664233576642, 'f1-score': 0.7081138040042149, 'support': 1370.0}
  • Precision 2: 0.6825
  • Recall 2: 0.7358
  • F1-score 2: 0.7081
  • Support 2: 1370.0
  • 3 Shots: {'precision': 0.7035928143712575, 'recall': 0.5168621700879765, 'f1-score': 0.5959425190194421, 'support': 1364.0}
  • Precision 3: 0.7036
  • Recall 3: 0.5169
  • F1-score 3: 0.5959
  • Support 3: 1364.0
  • 4 Throw-in: {'precision': 0.8916363636363637, 'recall': 0.8948905109489051, 'f1-score': 0.8932604735883425, 'support': 1370.0}
  • Precision 4: 0.8916
  • Recall 4: 0.8949
  • F1-score 4: 0.8933
  • Support 4: 1370.0
  • Precision Macro avg: 0.7402
  • Recall Macro avg: 0.7157
  • F1-score Macro avg: 0.7150
  • Support Macro avg: 6847.0
  • Precision Weighted avg: 0.7402
  • Recall Weighted avg: 0.7159
  • F1-score Weighted avg: 0.7151
  • Support Weighted avg: 6847.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • total_eval_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy Balanced Accuracy Matthews Correlation Confusion Matrix 0 Ball out of play Precision 0 Recall 0 F1-score 0 Support 0 1 Foul Precision 1 Recall 1 F1-score 1 Support 1 2 Goal Precision 2 Recall 2 F1-score 2 Support 2 3 Shots Precision 3 Recall 3 F1-score 3 Support 3 4 Throw-in Precision 4 Recall 4 F1-score 4 Support 4 Precision Macro avg Recall Macro avg F1-score Macro avg Support Macro avg Precision Weighted avg Recall Weighted avg F1-score Weighted avg Support Weighted avg
0.7825 1.0 428 0.9234 0.6207 0.6205 0.5371 [[ 961 43 100 80 188]
[ 461 597 105 35 173]
[ 195 22 953 167 33]
[ 454 33 354 464 59]
[ 65 7 19 4 1275]] {'precision': 0.4499063670411985, 'recall': 0.7004373177842566, 'f1-score': 0.5478905359179019, 'support': 1372.0} 0.4499 0.7004 0.5479 1372.0 {'precision': 0.8504273504273504, 'recall': 0.43544857768052514, 'f1-score': 0.5759768451519537, 'support': 1371.0} 0.8504 0.4354 0.5760 1371.0 {'precision': 0.6224689745264533, 'recall': 0.6956204379562044, 'f1-score': 0.6570148224750086, 'support': 1370.0} 0.6225 0.6956 0.6570 1370.0 {'precision': 0.6186666666666667, 'recall': 0.34017595307917886, 'f1-score': 0.4389782403027436, 'support': 1364.0} 0.6187 0.3402 0.4390 1364.0 {'precision': 0.7378472222222222, 'recall': 0.9306569343065694, 'f1-score': 0.8231116849580373, 'support': 1370.0} 0.7378 0.9307 0.8231 1370.0 0.6559 0.6205 0.6086 6847.0 0.6559 0.6207 0.6087 6847.0
0.8655 2.0 856 0.8769 0.6648 0.6646 0.5874 [[1007 78 82 82 123]
[ 328 794 78 54 117]
[ 162 36 972 182 18]
[ 398 50 313 536 67]
[ 74 15 30 8 1243]] {'precision': 0.5114271203656678, 'recall': 0.7339650145772595, 'f1-score': 0.6028135288835678, 'support': 1372.0} 0.5114 0.7340 0.6028 1372.0 {'precision': 0.816032887975334, 'recall': 0.5791393143690736, 'f1-score': 0.6774744027303755, 'support': 1371.0} 0.8160 0.5791 0.6775 1371.0 {'precision': 0.6589830508474577, 'recall': 0.7094890510948905, 'f1-score': 0.6833040421792619, 'support': 1370.0} 0.6590 0.7095 0.6833 1370.0 {'precision': 0.6218097447795824, 'recall': 0.39296187683284456, 'f1-score': 0.48158131176999097, 'support': 1364.0} 0.6218 0.3930 0.4816 1364.0 {'precision': 0.7927295918367347, 'recall': 0.9072992700729927, 'f1-score': 0.8461538461538461, 'support': 1370.0} 0.7927 0.9073 0.8462 1370.0 0.6802 0.6646 0.6583 6847.0 0.6802 0.6648 0.6584 6847.0
0.8065 3.0 1284 0.7639 0.7037 0.7035 0.6356 [[1046 89 119 82 36]
[ 271 906 104 47 43]
[ 106 21 1116 126 1]
[ 266 35 408 646 9]
[ 141 51 60 14 1104]] {'precision': 0.571584699453552, 'recall': 0.7623906705539358, 'f1-score': 0.6533416614615865, 'support': 1372.0} 0.5716 0.7624 0.6533 1372.0 {'precision': 0.822141560798548, 'recall': 0.6608315098468271, 'f1-score': 0.7327133036797413, 'support': 1371.0} 0.8221 0.6608 0.7327 1371.0 {'precision': 0.6175982291090205, 'recall': 0.8145985401459854, 'f1-score': 0.7025495750708216, 'support': 1370.0} 0.6176 0.8146 0.7025 1370.0 {'precision': 0.7060109289617487, 'recall': 0.4736070381231672, 'f1-score': 0.566915313734094, 'support': 1364.0} 0.7060 0.4736 0.5669 1364.0 {'precision': 0.9253981559094719, 'recall': 0.8058394160583942, 'f1-score': 0.8614904408895825, 'support': 1370.0} 0.9254 0.8058 0.8615 1370.0 0.7285 0.7035 0.7034 6847.0 0.7285 0.7037 0.7035 6847.0
0.6598 4.0 1712 0.7694 0.6994 0.6992 0.6319 [[1106 42 82 80 62]
[ 379 735 117 60 80]
[ 133 17 1053 159 8]
[ 293 28 340 671 32]
[ 98 16 21 11 1224]] {'precision': 0.5505226480836237, 'recall': 0.8061224489795918, 'f1-score': 0.6542443064182195, 'support': 1372.0} 0.5505 0.8061 0.6542 1372.0 {'precision': 0.8770883054892601, 'recall': 0.5361050328227571, 'f1-score': 0.6654594839293798, 'support': 1371.0} 0.8771 0.5361 0.6655 1371.0 {'precision': 0.652820830750155, 'recall': 0.7686131386861313, 'f1-score': 0.7060006704659737, 'support': 1370.0} 0.6528 0.7686 0.7060 1370.0 {'precision': 0.6839959225280327, 'recall': 0.49193548387096775, 'f1-score': 0.5722814498933901, 'support': 1364.0} 0.6840 0.4919 0.5723 1364.0 {'precision': 0.8705547652916074, 'recall': 0.8934306569343066, 'f1-score': 0.8818443804034583, 'support': 1370.0} 0.8706 0.8934 0.8818 1370.0 0.7270 0.6992 0.6960 6847.0 0.7270 0.6994 0.6961 6847.0
0.5968 5.0 2140 0.7820 0.6991 0.6989 0.6335 [[1140 50 77 59 46]
[ 360 834 85 32 60]
[ 186 26 1007 140 11]
[ 384 56 293 593 38]
[ 129 19 6 3 1213]] {'precision': 0.5184174624829468, 'recall': 0.8309037900874635, 'f1-score': 0.6384766171940633, 'support': 1372.0} 0.5184 0.8309 0.6385 1372.0 {'precision': 0.8467005076142132, 'recall': 0.6083150984682714, 'f1-score': 0.7079796264855689, 'support': 1371.0} 0.8467 0.6083 0.7080 1371.0 {'precision': 0.6859673024523161, 'recall': 0.7350364963503649, 'f1-score': 0.7096546863988723, 'support': 1370.0} 0.6860 0.7350 0.7097 1370.0 {'precision': 0.717049576783555, 'recall': 0.4347507331378299, 'f1-score': 0.5413053400273847, 'support': 1364.0} 0.7170 0.4348 0.5413 1364.0 {'precision': 0.8866959064327485, 'recall': 0.8854014598540146, 'f1-score': 0.8860482103725348, 'support': 1370.0} 0.8867 0.8854 0.8860 1370.0 0.7310 0.6989 0.6967 6847.0 0.7309 0.6991 0.6968 6847.0
0.5675 6.0 2568 0.7603 0.7159 0.7157 0.6515 [[1135 54 69 73 41]
[ 333 828 92 50 68]
[ 161 23 1008 165 13]
[ 306 34 292 705 27]
[ 102 17 16 9 1226]] {'precision': 0.5571919489445263, 'recall': 0.827259475218659, 'f1-score': 0.665884423584629, 'support': 1372.0} 0.5572 0.8273 0.6659 1372.0 {'precision': 0.8661087866108786, 'recall': 0.6039387308533917, 'f1-score': 0.7116458960034379, 'support': 1371.0} 0.8661 0.6039 0.7116 1371.0 {'precision': 0.6824644549763034, 'recall': 0.7357664233576642, 'f1-score': 0.7081138040042149, 'support': 1370.0} 0.6825 0.7358 0.7081 1370.0 {'precision': 0.7035928143712575, 'recall': 0.5168621700879765, 'f1-score': 0.5959425190194421, 'support': 1364.0} 0.7036 0.5169 0.5959 1364.0 {'precision': 0.8916363636363637, 'recall': 0.8948905109489051, 'f1-score': 0.8932604735883425, 'support': 1370.0} 0.8916 0.8949 0.8933 1370.0 0.7402 0.7157 0.7150 6847.0 0.7402 0.7159 0.7151 6847.0
0.4824 7.0 2996 0.8064 0.6958 0.6956 0.6308 [[1178 37 62 69 26]
[ 396 787 80 57 51]
[ 188 14 993 172 3]
[ 378 32 287 650 17]
[ 173 16 17 8 1156]] {'precision': 0.5092952875054042, 'recall': 0.858600583090379, 'f1-score': 0.639348710990502, 'support': 1372.0} 0.5093 0.8586 0.6393 1372.0 {'precision': 0.8882618510158014, 'recall': 0.574033552151714, 'f1-score': 0.6973859105006646, 'support': 1371.0} 0.8883 0.5740 0.6974 1371.0 {'precision': 0.6900625434329395, 'recall': 0.7248175182481752, 'f1-score': 0.7070131719473122, 'support': 1370.0} 0.6901 0.7248 0.7070 1370.0 {'precision': 0.6799163179916318, 'recall': 0.47653958944281527, 'f1-score': 0.560344827586207, 'support': 1364.0} 0.6799 0.4765 0.5603 1364.0 {'precision': 0.922585794094174, 'recall': 0.8437956204379562, 'f1-score': 0.881433473122379, 'support': 1370.0} 0.9226 0.8438 0.8814 1370.0 0.7380 0.6956 0.6971 6847.0 0.7380 0.6958 0.6972 6847.0
0.6574 8.0 3424 0.7998 0.7035 0.7033 0.6385 [[1141 55 85 65 26]
[ 341 827 113 50 40]
[ 150 19 1084 113 4]
[ 321 47 353 624 19]
[ 166 32 25 6 1141]] {'precision': 0.5384615384615384, 'recall': 0.8316326530612245, 'f1-score': 0.6536808937267259, 'support': 1372.0} 0.5385 0.8316 0.6537 1372.0 {'precision': 0.8438775510204082, 'recall': 0.6032093362509118, 'f1-score': 0.7035304125903871, 'support': 1371.0} 0.8439 0.6032 0.7035 1371.0 {'precision': 0.653012048192771, 'recall': 0.7912408759124088, 'f1-score': 0.7155115511551154, 'support': 1370.0} 0.6530 0.7912 0.7155 1370.0 {'precision': 0.7272727272727273, 'recall': 0.4574780058651026, 'f1-score': 0.5616561656165616, 'support': 1364.0} 0.7273 0.4575 0.5617 1364.0 {'precision': 0.9276422764227642, 'recall': 0.8328467153284671, 'f1-score': 0.8776923076923077, 'support': 1370.0} 0.9276 0.8328 0.8777 1370.0 0.7381 0.7033 0.7024 6847.0 0.7380 0.7035 0.7025 6847.0
0.4709 9.0 3852 0.8032 0.7024 0.7021 0.6373 [[1161 47 70 68 26]
[ 365 794 98 62 52]
[ 177 16 1019 155 3]
[ 353 39 297 654 21]
[ 149 19 16 5 1181]] {'precision': 0.5265306122448979, 'recall': 0.8462099125364432, 'f1-score': 0.6491473301649426, 'support': 1372.0} 0.5265 0.8462 0.6491 1372.0 {'precision': 0.8677595628415301, 'recall': 0.5791393143690736, 'f1-score': 0.6946631671041119, 'support': 1371.0} 0.8678 0.5791 0.6947 1371.0 {'precision': 0.6793333333333333, 'recall': 0.7437956204379562, 'f1-score': 0.7101045296167248, 'support': 1370.0} 0.6793 0.7438 0.7101 1370.0 {'precision': 0.6927966101694916, 'recall': 0.47947214076246336, 'f1-score': 0.5667244367417678, 'support': 1364.0} 0.6928 0.4795 0.5667 1364.0 {'precision': 0.9204988308651598, 'recall': 0.862043795620438, 'f1-score': 0.8903128533735394, 'support': 1370.0} 0.9205 0.8620 0.8903 1370.0 0.7374 0.7021 0.7022 6847.0 0.7374 0.7024 0.7023 6847.0
0.3689 10.0 4280 0.8093 0.7082 0.7079 0.6447 [[1160 58 65 58 31]
[ 343 852 86 40 50]
[ 191 23 1015 136 5]
[ 383 52 284 624 21]
[ 130 24 13 5 1198]] {'precision': 0.5256003624830086, 'recall': 0.8454810495626822, 'f1-score': 0.648225761385862, 'support': 1372.0} 0.5256 0.8455 0.6482 1372.0 {'precision': 0.844400396432111, 'recall': 0.6214442013129103, 'f1-score': 0.7159663865546219, 'support': 1371.0} 0.8444 0.6214 0.7160 1371.0 {'precision': 0.69377990430622, 'recall': 0.7408759124087592, 'f1-score': 0.7165548888104484, 'support': 1370.0} 0.6938 0.7409 0.7166 1370.0 {'precision': 0.7230590961761297, 'recall': 0.4574780058651026, 'f1-score': 0.5603951504265828, 'support': 1364.0} 0.7231 0.4575 0.5604 1364.0 {'precision': 0.918007662835249, 'recall': 0.8744525547445255, 'f1-score': 0.8957009345794392, 'support': 1370.0} 0.9180 0.8745 0.8957 1370.0 0.7410 0.7079 0.7074 6847.0 0.7409 0.7082 0.7075 6847.0

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+git8bfa463
  • Datasets 2.13.1
  • Tokenizers 0.13.3
Downloads last month
31
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for SushantGautam/videomae-small-finetuned-kinetics-finetuned-SNchunks-5c-a40

Finetuned
(6)
this model