Add model card and metadata for R1-Omni-0.5B

#1
by nielsr HF staff - opened
Files changed (1) hide show
  1. README.md +67 -0
README.md ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-4.0
3
+ library_name: transformers
4
+ pipeline_tag: video-text-to-text
5
+ ---
6
+
7
+ # R1-Omni: Explainable Omni-Multimodal Emotion Recognition with Reinforcement Learning
8
+
9
+ [![ModelScope](https://img.shields.io/badge/ModelScope-R1Omni-blue)](https://modelscope.cn/models/iic/R1-Omni-0.5B)
10
+ [![Hugging Face](https://img.shields.io/badge/HuggingFace-R1Omni-yellow)](https://huggingface.co/StarJiaxing/R1-Omni-0.5B)
11
+ [![arXiv](https://img.shields.io/badge/arXiv-2503.05379-red)](https://arxiv.org/abs/2503.05379)
12
+
13
+ This model utilizes Reinforcement Learning with Verifiable Reward (RLVR) to perform omni-multimodal emotion recognition. Built upon the HumanOmni-0.5B model, R1-Omni excels at understanding visual and audio cues for emotion identification, even in out-of-distribution scenarios.
14
+
15
+ ## πŸ“– Introduction
16
+ **R1-Omni** is the first application of Reinforcement Learning with Verifiable Reward (RLVR) to an Omni-multimodal large language model. It focuses on emotion recognition, where visual and audio modalities play crucial roles. Key insights include:
17
+
18
+ 1) **Enhanced Reasoning Capability**: R1-Omni demonstrates superior reasoning abilities, enabling a clearer understanding of how visual and audio information contribute to emotion recognition.
19
+ 2) **Improved Understanding Capability**: Compared to SFT, RLVR significantly boosts performance on emotion recognition tasks.
20
+ 3) **Stronger Generalization Capability**: RLVR models exhibit markedly better generalization capabilities, particularly excelling in out-of-distribution scenarios.
21
+
22
+ ## πŸ“¦ Model Download
23
+ The model is based on the open-source HumanOmni-0.5B model. The following models are available: HumanOmni-0.5B, the cold-start model EMER-SFT, the model MAFW-DFEW-SFT fine-tuned directly on the MAFW and DFEW training sets, and the final model R1-Omni.
24
+
25
+ <div align="center">
26
+
27
+ | **Model** | **HuggingFace** | **ModelScope** |
28
+ |------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------|
29
+ | `HumanOmni-0.5B` | [![HF](https://img.shields.io/badge/πŸ€—-Download-yellow)](https://hf.co/StarJiaxing/HumanOmni-0.5B) | [![MS](https://img.shields.io/badge/ModelScope-Download-blue)](https://modelscope.cn/models/iic/HumanOmni-0.5B) |
30
+ | `EMER-SFT` | [![HF](https://img.shields.io/badge/πŸ€—-Download-yellow)](https://hf.co/StarJiaxing/EMER-SFT-0.5B) | [![MS](https://img.shields.io/badge/ModelScope-Download-blue)](https://modelscope.cn/models/iic/EMER-SFT-0.5B) |
31
+ | `MAFW-DFEW-SFT` | [![HF](https://img.shields.io/badge/πŸ€—-Download-yellow)](https://huggingface.co/StarJiaxing/MAFW-DFEW-0.5B) | [![MS](https://img.shields.io/badge/ModelScope-Download-blue)](https://modelscope.cn/models/iic/MAFW-DFEW-0.5B) |
32
+ | `R1-Omni` | [![HF](https://img.shields.io/badge/πŸ€—-Download-yellow)](https://huggingface.co/StarJiaxing/R1-Omni-0.5B) | [![MS](https://img.shields.io/badge/ModelScope-Download-blue)](https://modelscope.cn/models/iic/R1-Omni-0.5B) |
33
+ </div>
34
+
35
+ ## πŸ† Performance
36
+
37
+ Below are the performance on emotion recognition datasets. We use symbols to indicate whether the data is **in-distribution (⬀)** or **out-of-distribution (β–³)**.
38
+
39
+ | Method | DFEW (WAR) ⬀ | DFEW (UAR) ⬀ | MAFW (WAR) ⬀ | MAFW (UAR) ⬀ | RAVDESS (WAR) β–³ | RAVDESS (UAR) β–³ |
40
+ |----------------------------------|---------------|---------------|---------------|---------------|------------------|------------------|
41
+ | HumanOmni-0.5B | 22.64 | 19.44 | 20.18 | 13.52 | 7.33 | 9.38 |
42
+ | EMER-SFT | 38.66 | 35.31 | 38.39 | 28.02 | 29.00 | 27.19 |
43
+ | MAFW-DFEW-SFT | 60.23 | 44.39 | 50.44 | 30.39 | 29.33 | 30.75 |
44
+ | R1-Omni | 65.83 | 56.27 | 57.68 | 40.04 | 43.00 | 44.69 |
45
+
46
+ ![image](https://github.com/user-attachments/assets/f0239753-8a70-4e8b-9088-35c420595978)
47
+
48
+ ### Legend
49
+ - **⬀**: Indicates **in-distribution data** (DFEW and MAFW).
50
+ - **β–³**: Indicates **out-of-distribution data** (RAVDESS).
51
+
52
+ ## πŸ› οΈ Environment Setup
53
+ Our code is built on the R1-V framework. To set up the environment, please follow the installation instructions in the [R1-V repository](https://github.com/Deep-Agent/R1-V/)
54
+
55
+ ## πŸ” Inference
56
+ Our inference code is based on the implementation from **HumanOmni**.
57
+
58
+ ## πŸ“š Citation
59
+ If you find our work helpful, feel free to cite us.
60
+ ```
61
+ {zhao2025r1omniexplainableomnimultimodalemotion,
62
+ title={R1-Omni: Explainable Omni-Multimodal Emotion Recognition with Reinforcement Learning},
63
+ author={Jiaxing Zhao and Xihan Wei and Liefeng Bo},
64
+ journal={arXiv preprint arXiv:2503.05379},
65
+ year={2025}
66
+ }
67
+ ```