|
--- |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: TrOCR-SIN(DeiT) |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# TrOCR-SIN(DeiT) |
|
|
|
This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4335 |
|
- Cer: 0.1445 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- training_steps: 75000 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Cer | Validation Loss | |
|
|:-------------:|:-----:|:-----:|:------:|:---------------:| |
|
| 1.3019 | 1.78 | 5000 | 0.6416 | 1.7769 | |
|
| 0.6387 | 3.55 | 10000 | 0.4048 | 0.8457 | |
|
| 0.3402 | 5.33 | 15000 | 0.2808 | 0.6898 | |
|
| 0.1332 | 7.11 | 20000 | 0.2377 | 0.5765 | |
|
| 0.1141 | 8.89 | 25000 | 0.2223 | 0.4460 | |
|
| 0.0481 | 10.66 | 30000 | 0.1868 | 0.4128 | |
|
| 0.0391 | 12.44 | 35000 | 0.1563 | 0.4172 | |
|
| 0.0357 | 14.22 | 40000 | 0.1981 | 0.4756 | |
|
| 0.0215 | 16.0 | 45000 | 0.1983 | 0.5838 | |
|
| 0.0129 | 17.77 | 50000 | 0.1757 | 0.5511 | |
|
| 0.0087 | 19.55 | 55000 | 0.1699 | 0.5568 | |
|
| 0.003 | 21.33 | 60000 | 0.1648 | 0.4532 | |
|
| 0.0042 | 23.11 | 65000 | 0.1582 | 0.4650 | |
|
| 0.0066 | 24.88 | 70000 | 0.1654 | 0.4740 | |
|
| 0.0014 | 26.66 | 75000 | 0.1448 | 0.4337 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.1 |
|
|