saiga-phi-3-mini-4k

saiga-phi-3-mini-4k is an SFT fine-tuned version of microsoft/Phi-3-mini-4k-instruct using a custom training dataset. This model was made with Phinetune

Process

  • Learning Rate: 1.41e-05
  • Maximum Sequence Length: 2048
  • Dataset: IlyaGusev/ru_turbo_saiga
  • Split: train

πŸ’» Usage

!pip install -qU transformers
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline

model = "Slavator096/saiga-phi-3-mini-4k"
tokenizer = AutoTokenizer.from_pretrained(model)

# Example prompt
prompt = "Your example prompt here"

# Generate a response
model = AutoModelForCausalLM.from_pretrained(model)
pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer)
outputs = pipeline(prompt, max_length=50, num_return_sequences=1)
print(outputs[0]["generated_text"])
Downloads last month
14
Safetensors
Model size
3.82B params
Tensor type
F32
Β·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for Slavator096/saiga-phi-3-mini-4k

Quantizations
1 model