|
--- |
|
license: apache-2.0 |
|
base_model: philschmid/flan-t5-base-samsum |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: flan-t5-base-samsum-spotify-podcasts |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# flan-t5-base-samsum-spotify-podcasts |
|
|
|
This model is a fine-tuned version of [philschmid/flan-t5-base-samsum](https://huggingface.co/philschmid/flan-t5-base-samsum) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.3026 |
|
- Rouge1: 0.27 |
|
- Rouge2: 0.1512 |
|
- Rougel: 0.2352 |
|
- Rougelsum: 0.2355 |
|
- Gen Len: 19.0 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 4 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| |
|
| No log | 1.0 | 233 | 1.3963 | 0.2419 | 0.1266 | 0.2079 | 0.2077 | 19.0 | |
|
| No log | 2.0 | 466 | 1.3356 | 0.2637 | 0.1432 | 0.2265 | 0.2263 | 19.0 | |
|
| 1.6496 | 3.0 | 699 | 1.3088 | 0.2695 | 0.1491 | 0.2331 | 0.2331 | 19.0 | |
|
| 1.6496 | 4.0 | 932 | 1.3026 | 0.27 | 0.1512 | 0.2352 | 0.2355 | 19.0 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.0 |
|
- Pytorch 2.0.0 |
|
- Datasets 2.1.0 |
|
- Tokenizers 0.14.1 |
|
|