Shivam1311's picture
Add new SentenceTransformer model
e7a7abb verified
metadata
language:
  - en
license: apache-2.0
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:6300
  - loss:MatryoshkaLoss
  - loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-base-en-v1.5
widget:
  - source_sentence: >-
      The fair value of consideration transferred of $212.1 million consisted
      of: (1) cash consideration paid of $211.3 million, net of cash acquired,
      and (2) non-cash consideration of $0.8 million representing the portion of
      the replacement equity awards issued in connection with the acquisition
      that was associated with services rendered through the date of the
      acquisition.
    sentences:
      - >-
        What is the monthly cost of a Connected Fitness Subscription if it
        includes a combination of a Bike, Tread, Guide, or Row product in the
        same household as of June 2022?
      - >-
        What was the fair value of the total consideration transferred for the
        acquisition discussed, and how was it composed?
      - >-
        How did the Tax Court rule on November 18, 2020, regarding the company's
        dispute with the IRS?
  - source_sentence: >-
      Each of the UK LSA members has agreed, on a several and not joint basis,
      to compensate the Company for certain losses which may be incurred by the
      Company, Visa Europe or their affiliates as a result of certain existing
      and potential litigation relating to the setting and implementation of
      domestic multilateral interchange fee rates in the United Kingdom prior to
      the closing of the Visa Europe acquisition (Closing), subject to the terms
      and conditions set forth therein and, with respect to each UK LSA member,
      up to a maximum amount of the up-front cash consideration received by such
      UK LSA member. The UK LSA members’ obligations under the UK loss sharing
      agreement are conditional upon, among other things, either (a) losses
      valued in excess of the sterling equivalent on June 21, 2016 of €1.0
      billion having arisen in UK covered claims (and such losses having reduced
      the conversion rate of the series B preferred stock accordingly), or (b)
      the conversion rate of the series B preferred stock having been reduced to
      zero pursuant to losses arising in claims...
    sentences:
      - >-
        Are AbbVie's corporate governance materials available to the public, and
        if so, where?
      - >-
        What conditions must be met for the UK loss sharing agreement to
        compensate for losses?
      - >-
        How much did Delta Air Lines recognize in government grants from the
        Payroll Support Programs during the year ended December 31, 2021?
  - source_sentence: >-
      We provide our customers with an opportunity to trade-in their pre-owned
      gaming, mobility, and other products at our stores in exchange for cash or
      credit which can be applied towards the purchase of other products.
    sentences:
      - What is GameStop's trade-in program?
      - >-
        What were the total unrealized losses on U.S. Treasury securities as of
        the last reporting date?
      - >-
        What methods can a refinery use to meet its Environmental Protection
        Agency (EPA) requirements for blending renewable fuels?
  - source_sentence: >-
      Diluted earnings per share is calculated using our weighted-average
      outstanding common shares including the dilutive effect of stock awards as
      determined under the treasury stock method.
    sentences:
      - >-
        How do changes in the assumed long-term rate of return affect AbbVie's
        net periodic benefit cost for pension plans?
      - >-
        What are the primary factors discussed in the Management’s Discussion
        and Analysis that affect the financial statements year-to-year changes?
      - What is the method used to calculate diluted earnings per share?
  - source_sentence: >-
      Item 8 in the document covers 'Financial Statements and Supplementary
      Data'.
    sentences:
      - What type of information does Item 8 in the document cover?
      - >-
        What are some of the potential consequences for Meta Platforms, Inc.
        from inquiries or investigations as noted in the provided text?
      - How is the take rate calculated and what does it represent?
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
  - cosine_accuracy@1
  - cosine_accuracy@3
  - cosine_accuracy@5
  - cosine_accuracy@10
  - cosine_precision@1
  - cosine_precision@3
  - cosine_precision@5
  - cosine_precision@10
  - cosine_recall@1
  - cosine_recall@3
  - cosine_recall@5
  - cosine_recall@10
  - cosine_ndcg@10
  - cosine_mrr@10
  - cosine_map@100
model-index:
  - name: BGE base Financial Matryoshka
    results:
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 768
          type: dim_768
        metrics:
          - type: cosine_accuracy@1
            value: 0.68
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.8242857142857143
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8571428571428571
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.8985714285714286
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.68
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.27476190476190476
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.1714285714285714
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.08985714285714284
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.68
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.8242857142857143
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8571428571428571
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.8985714285714286
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7931022011968226
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.759021541950113
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.7627727073081649
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 512
          type: dim_512
        metrics:
          - type: cosine_accuracy@1
            value: 0.6685714285714286
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.82
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.86
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.9042857142857142
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.6685714285714286
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.2733333333333333
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.172
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09042857142857141
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.6685714285714286
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.82
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.86
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.9042857142857142
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7907009828560375
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7540430839002267
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.7572918009226873
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 256
          type: dim_256
        metrics:
          - type: cosine_accuracy@1
            value: 0.6771428571428572
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.8142857142857143
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8571428571428571
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.8857142857142857
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.6771428571428572
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.2714285714285714
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.1714285714285714
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.08857142857142855
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.6771428571428572
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.8142857142857143
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8571428571428571
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.8857142857142857
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7870155634206691
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7548027210884352
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.7592885578023618
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 128
          type: dim_128
        metrics:
          - type: cosine_accuracy@1
            value: 0.6542857142857142
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.8071428571428572
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8514285714285714
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.8857142857142857
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.6542857142857142
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.26904761904761904
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.17028571428571426
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.08857142857142856
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.6542857142857142
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.8071428571428572
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8514285714285714
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.8857142857142857
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7751084647376248
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.73912925170068
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.7430473786684797
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 64
          type: dim_64
        metrics:
          - type: cosine_accuracy@1
            value: 0.6157142857142858
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.7771428571428571
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8214285714285714
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.8728571428571429
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.6157142857142858
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.259047619047619
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.16428571428571428
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.08728571428571427
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.6157142857142858
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.7771428571428571
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8214285714285714
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.8728571428571429
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7472883962433147
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7067517006802716
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.7111439006196084
            name: Cosine Map@100

BGE base Financial Matryoshka

This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5 on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-base-en-v1.5
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity
  • Training Dataset:
    • json
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("Shivam1311/bge-base-financial-matryoshka")
# Run inference
sentences = [
    "Item 8 in the document covers 'Financial Statements and Supplementary Data'.",
    'What type of information does Item 8 in the document cover?',
    'What are some of the potential consequences for Meta Platforms, Inc. from inquiries or investigations as noted in the provided text?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric dim_768 dim_512 dim_256 dim_128 dim_64
cosine_accuracy@1 0.68 0.6686 0.6771 0.6543 0.6157
cosine_accuracy@3 0.8243 0.82 0.8143 0.8071 0.7771
cosine_accuracy@5 0.8571 0.86 0.8571 0.8514 0.8214
cosine_accuracy@10 0.8986 0.9043 0.8857 0.8857 0.8729
cosine_precision@1 0.68 0.6686 0.6771 0.6543 0.6157
cosine_precision@3 0.2748 0.2733 0.2714 0.269 0.259
cosine_precision@5 0.1714 0.172 0.1714 0.1703 0.1643
cosine_precision@10 0.0899 0.0904 0.0886 0.0886 0.0873
cosine_recall@1 0.68 0.6686 0.6771 0.6543 0.6157
cosine_recall@3 0.8243 0.82 0.8143 0.8071 0.7771
cosine_recall@5 0.8571 0.86 0.8571 0.8514 0.8214
cosine_recall@10 0.8986 0.9043 0.8857 0.8857 0.8729
cosine_ndcg@10 0.7931 0.7907 0.787 0.7751 0.7473
cosine_mrr@10 0.759 0.754 0.7548 0.7391 0.7068
cosine_map@100 0.7628 0.7573 0.7593 0.743 0.7111

Training Details

Training Dataset

json

  • Dataset: json
  • Size: 6,300 training samples
  • Columns: positive and anchor
  • Approximate statistics based on the first 1000 samples:
    positive anchor
    type string string
    details
    • min: 8 tokens
    • mean: 46.61 tokens
    • max: 439 tokens
    • min: 7 tokens
    • mean: 20.72 tokens
    • max: 51 tokens
  • Samples:
    positive anchor
    Operating costs and expenses increased $80.3 million, or 7.1%, during the year ended December 31, 2023, compared to the year ended December 31, 2022 primarily due to increases in film exhibition and food and beverage costs. What factors contributed to the escalation in operating costs and expenses in 2023?
    In the United States, the company purchases HFCS to meet its and its bottlers’ requirements with the assistance of Coca-Cola Bottlers’ Sales & Services Company LLC, which is a procurement service provider for their North American operations. How does the company source high fructose corn syrup (HFCS) in the United States?
    Item 8. Financial Statements and Supplementary Data The index to Financial Statements and Supplementary Data is presented What is presented in Item 8 according to Financial Statements and Supplementary Data?
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • gradient_accumulation_steps: 16
  • learning_rate: 2e-05
  • num_train_epochs: 4
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • bf16: True
  • tf32: False
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 16
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: False
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss dim_768_cosine_ndcg@10 dim_512_cosine_ndcg@10 dim_256_cosine_ndcg@10 dim_128_cosine_ndcg@10 dim_64_cosine_ndcg@10
0.4061 10 16.0873 - - - - -
0.8122 20 8.3282 - - - - -
1.0 25 - 0.7841 0.7796 0.7774 0.7631 0.7320
1.2030 30 5.1781 - - - - -
1.6091 40 4.0947 - - - - -
2.0 50 3.9824 0.7888 0.7867 0.7851 0.7701 0.7401
2.4061 60 2.854 - - - - -
2.8122 70 2.9878 - - - - -
3.0 75 - 0.7913 0.7903 0.7869 0.7755 0.7469
3.2030 80 2.5653 - - - - -
3.6091 90 2.999 - - - - -
3.8528 96 - 0.7931 0.7907 0.7870 0.7751 0.7473
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.11.11
  • Sentence Transformers: 3.4.1
  • Transformers: 4.48.3
  • PyTorch: 2.5.1+cu124
  • Accelerate: 1.3.0
  • Datasets: 3.3.2
  • Tokenizers: 0.21.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}