Paper: https://arxiv.org/pdf/2502.07780
Code: https://github.com/IST-DASLab/DarwinLM
Models: DarwinLM-2.7B, DarwinLM-4.6B, DarwinLM-8.4B
Pruned Models without Post-training: DarwinLM-2.7B-Pruned, DarwinLM-4.6B-Pruned, DarwinLM-8.4B-Pruned


This repository contains the weights of DarwinLM, an evolutionary structured pruning methods for large language models, as introduced in our paper. DarwinLM builds upon an evolutionary search process, generating multiple offspring models in each generation through mutation, and selecting the fittest for survival.

# Please add trust_remote_code=True as the repo includes custom code to load and run DarwinLM
model = AutoModelForCausalLM.from_pretrained("Shengkun/DarwinLM-2.7B-Pruned", trust_remote_code=True)

Downstream Tasks

2.7B

Method Param. SciQ PIQA WG ArcE ArcC HS LogiQA BoolQ Avg
Dense 6.7B 93.7 78.1 69.3 76.4 53.0 78.6 30.7 77.7 69.2
Uniform 3.4B 44.1 57.1 53.3 33.5 32.2 27.3 25.0 49.0 40.1
ZipLM 4.0B 87.4 64.4 58.3 53.2 33.6 50.1 25.5 63.6 54.5
ShearedLLama 2.7B 84.5 66.4 53.4 49.8 28.4 47.6 27.6 50.9 51.0
DarwinLM (one-shot) 2.7B 85.6 70.8 55.8 63.3 38.1 53.2 28.5 62.7 57.2
ShearedLLama (50B) 2.7B 90.8 75.8 64.2 67.0 41.2 70.8 28.2 63.0 62.6
ShearedLLama (10B†) 2.7B 92.0 73.6 63.1 69.8 42.0 64.4 29.0 62.1 61.9
DarwinLM (10B) 2.6B 90.8 72.2 65.1 68.5 45.0 67.2 28.5 64.6 62.8

4.6B

Model Method Param. SciQ PIQA WG ArcE ArcC HS LogiQA BoolQ MMLU Avg
Llama-3.1-8B Dense 8B 96.3 81.2 74.3 81.4 58.2 81.7 31.1 84.0 65.2 72.8
Uniform 4.5B 29.1 53.6 51.7 26.0 23.6 27.1 25.5 62.1 25.7 36.1
ZipLM 6B 65.5 60.6 56.0 40.2 34.4 34.4 28.1 63.0 27.9 45.7
DarwinLM (one-shot) 4.6B 84.9 69.4 57.3 59.6 34.2 44.6 24.1 62.2 28.5 51.6
OLMO (2.5T) 7B 92.8 79.4 70.4 73.3 44.9 77.1 27.9 72.5 28.3 62.9
DarwinLM (10.0B) 4.6B 93.2 74.8 67.4 73.2 51.6 71.3 30.7 71.1 40.6 63.7

8.4B

Model Method Param. SciQ PIQA WG ArcE ArcC HS LogiQA BoolQ MMLU Avg
Qwen-2.5-14B-Instruct Dense 14B 96.8 81.9 79.1 85.7 72.8 85.1 38.5 87.9 80.0 78.6
Uniform 8.6B 78.2 72.7 57.6 76.1 45.6 47.0 28.1 61.6 45.5 56.9
ZipLM 8.5B 69.0 66.4 52.8 60.1 38.3 43.3 29.6 60.2 25.0 49.4
DarwinLM (one-shot) 8.4B 84.3 73.9 60.5 75.7 48.0 53.3 29.3 66.9 43.1 59.4
OLMO-0424 (2.05T) 7B 96.1 80.1 72.1 73.8 49.2 78.0 29.3 80.8 52.1 67.9
DarwinLM (10.0B) 8.4B 89.5 78.1 70.7 79.6 57.6 74.9 33.5 73.9 57.9 68.4

Bibtex

@article{tang2025darwinlm,
  title={DarwinLM: Evolutionary Structured Pruning of Large Language Models},
  author={Tang, Shengkun and Sieberling, Oliver and Kurtic, Eldar and Shen, Zhiqiang and Alistarh, Dan},
  journal={arXiv preprint arXiv:2502.07780},
  year={2025}
}
Downloads last month
18
Safetensors
Model size
2.74B params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.