videomae-base-finetuned-ucf101-relevancedetection-surgical
This model is a fine-tuned version of MCG-NJU/videomae-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0913
- Accuracy: 0.9828
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 7370
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.2187 | 0.0501 | 369 | 2.3587 | 0.5141 |
0.2004 | 1.0501 | 738 | 0.3347 | 0.8992 |
0.0702 | 2.0501 | 1107 | 0.1048 | 0.9657 |
0.0174 | 3.0501 | 1476 | 0.1231 | 0.9637 |
0.0463 | 4.0501 | 1845 | 0.5684 | 0.9012 |
0.0008 | 5.0501 | 2214 | 1.7179 | 0.7702 |
0.022 | 6.0501 | 2583 | 0.4177 | 0.8972 |
0.0055 | 7.0501 | 2952 | 0.0563 | 0.9738 |
0.0303 | 8.0501 | 3321 | 0.2138 | 0.9657 |
0.001 | 9.0501 | 3690 | 0.4224 | 0.9133 |
0.0004 | 10.0501 | 4059 | 0.2029 | 0.9577 |
0.0003 | 11.0501 | 4428 | 0.4289 | 0.9375 |
0.0002 | 12.0501 | 4797 | 0.5915 | 0.9214 |
0.0001 | 13.0501 | 5166 | 0.1033 | 0.9718 |
0.0001 | 14.0501 | 5535 | 0.1252 | 0.9677 |
0.0002 | 15.0501 | 5904 | 0.1371 | 0.9617 |
0.0001 | 16.0501 | 6273 | 0.0273 | 0.9919 |
0.0002 | 17.0501 | 6642 | 0.0450 | 0.9899 |
0.0001 | 18.0501 | 7011 | 0.0284 | 0.9899 |
0.0001 | 19.0487 | 7370 | 0.0224 | 0.9940 |
Framework versions
- Transformers 4.45.0.dev0
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 61
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for Shangong/videomae-base-finetuned-ucf101-relevancedetection-surgical
Base model
MCG-NJU/videomae-base