|
_base_ = 'ssj_270k_coco-instance.py' |
|
|
|
dataset_type = 'CocoDataset' |
|
data_root = 'data/coco/' |
|
|
|
image_size = (1024, 1024) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
backend_args = None |
|
|
|
|
|
|
|
load_pipeline = [ |
|
dict(type='LoadImageFromFile', backend_args=backend_args), |
|
dict(type='LoadAnnotations', with_bbox=True, with_mask=True), |
|
dict( |
|
type='RandomResize', |
|
scale=image_size, |
|
ratio_range=(0.8, 1.25), |
|
keep_ratio=True), |
|
dict( |
|
type='RandomCrop', |
|
crop_type='absolute_range', |
|
crop_size=image_size, |
|
recompute_bbox=True, |
|
allow_negative_crop=True), |
|
dict(type='FilterAnnotations', min_gt_bbox_wh=(1e-2, 1e-2)), |
|
dict(type='RandomFlip', prob=0.5), |
|
dict(type='Pad', size=image_size), |
|
] |
|
train_pipeline = [ |
|
dict(type='CopyPaste', max_num_pasted=100), |
|
dict(type='PackDetInputs') |
|
] |
|
|
|
train_dataloader = dict( |
|
dataset=dict( |
|
_delete_=True, |
|
type='MultiImageMixDataset', |
|
dataset=dict( |
|
type=dataset_type, |
|
data_root=data_root, |
|
ann_file='annotations/instances_train2017.json', |
|
data_prefix=dict(img='train2017/'), |
|
filter_cfg=dict(filter_empty_gt=True, min_size=32), |
|
pipeline=load_pipeline, |
|
backend_args=backend_args), |
|
pipeline=train_pipeline)) |
|
|