File size: 1,949 Bytes
6c9ac8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
_base_ = 'ssj_270k_coco-instance.py'
# dataset settings
dataset_type = 'CocoDataset'
data_root = 'data/coco/'

image_size = (1024, 1024)

# Example to use different file client
# Method 1: simply set the data root and let the file I/O module
# automatically infer from prefix (not support LMDB and Memcache yet)

# data_root = 's3://openmmlab/datasets/detection/coco/'

# Method 2: Use `backend_args`, `file_client_args` in versions before 3.0.0rc6
# backend_args = dict(
#     backend='petrel',
#     path_mapping=dict({
#         './data/': 's3://openmmlab/datasets/detection/',
#         'data/': 's3://openmmlab/datasets/detection/'
#     }))
backend_args = None

# Standard Scale Jittering (SSJ) resizes and crops an image
# with a resize range of 0.8 to 1.25 of the original image size.
load_pipeline = [
    dict(type='LoadImageFromFile', backend_args=backend_args),
    dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
    dict(
        type='RandomResize',
        scale=image_size,
        ratio_range=(0.8, 1.25),
        keep_ratio=True),
    dict(
        type='RandomCrop',
        crop_type='absolute_range',
        crop_size=image_size,
        recompute_bbox=True,
        allow_negative_crop=True),
    dict(type='FilterAnnotations', min_gt_bbox_wh=(1e-2, 1e-2)),
    dict(type='RandomFlip', prob=0.5),
    dict(type='Pad', size=image_size),
]
train_pipeline = [
    dict(type='CopyPaste', max_num_pasted=100),
    dict(type='PackDetInputs')
]

train_dataloader = dict(
    dataset=dict(
        _delete_=True,
        type='MultiImageMixDataset',
        dataset=dict(
            type=dataset_type,
            data_root=data_root,
            ann_file='annotations/instances_train2017.json',
            data_prefix=dict(img='train2017/'),
            filter_cfg=dict(filter_empty_gt=True, min_size=32),
            pipeline=load_pipeline,
            backend_args=backend_args),
        pipeline=train_pipeline))