result_model / README.md
SamiKazrboubi's picture
SamiKazrboubi/hack_ai_embbedding_model
9dd2867 verified
metadata
language:
  - en
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:80
  - loss:CoSENTLoss
base_model: abdeljalilELmajjodi/model
widget:
  - source_sentence: A man, woman, and child enjoying themselves on a beach.
    sentences:
      - A family of three is at the mall shopping.
      - An actress and her favorite assistant talk a walk in the city.
      - The woman is nake.
  - source_sentence: A woman in a green jacket and hood over her head looking towards a valley.
    sentences:
      - Nobody has food.
      - The people are sitting at desks in school.
      - The woman is wearing green.
  - source_sentence: >-
      Woman in white in foreground and a man slightly behind walking with a sign
      for John's Pizza and Gyro in the background.
    sentences:
      - The woman is wearing black.
      - A man is drinking juice.
      - >-
        A blond man wearing a brown shirt is reading a book on a bench in the
        park
  - source_sentence: >-
      Two adults, one female in white, with shades and one male, gray clothes,
      walking across a street, away from a eatery with a blurred image of a dark
      colored red shirted person in the foreground.
    sentences:
      - >-
        Two adults walking across a road near the convicted prisoner dressed in
        red
      - The family is sitting down for dinner.
      - A person that is hungry.
  - source_sentence: >-
      A woman wearing all white and eating, walks next to a man holding a
      briefcase.
    sentences:
      - Near a couple of restaurants, two people walk across the street.
      - >-
        A woman eats ice cream walking down the sidewalk, and there is another
        woman in front of her with a purse.
      - A married couple is walking next to each other.
datasets:
  - sentence-transformers/all-nli
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
  - pearson_cosine
  - spearman_cosine
model-index:
  - name: SentenceTransformer based on abdeljalilELmajjodi/model
    results:
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: pair score evaluator dev
          type: pair-score-evaluator-dev
        metrics:
          - type: pearson_cosine
            value: 0.5632238441216909
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.5948422242500994
            name: Spearman Cosine

SentenceTransformer based on abdeljalilELmajjodi/model

This is a sentence-transformers model finetuned from abdeljalilELmajjodi/model on the all-nli dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: abdeljalilELmajjodi/model
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 1024 dimensions
  • Similarity Function: Cosine Similarity
  • Training Dataset:
  • Language: en

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'A woman wearing all white and eating, walks next to a man holding a briefcase.',
    'A married couple is walking next to each other.',
    'Near a couple of restaurants, two people walk across the street.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric Value
pearson_cosine 0.5632
spearman_cosine 0.5948

Training Details

Training Dataset

all-nli

  • Dataset: all-nli at d482672
  • Size: 80 training samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 80 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 10 tokens
    • mean: 26.15 tokens
    • max: 52 tokens
    • min: 5 tokens
    • mean: 11.68 tokens
    • max: 29 tokens
    • min: 0.0
    • mean: 0.54
    • max: 1.0
  • Samples:
    sentence1 sentence2 score
    Two women, holding food carryout containers, hug. Two women hug each other. 1.0
    Two adults, one female in white, with shades and one male, gray clothes, walking across a street, away from a eatery with a blurred image of a dark colored red shirted person in the foreground. Two people walk home after a tasty steak dinner. 0.5
    An older man is drinking orange juice at a restaurant. Two women are at a restaurant drinking wine. 0.0
  • Loss: CoSENTLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "pairwise_cos_sim"
    }
    

Evaluation Dataset

all-nli

  • Dataset: all-nli at d482672
  • Size: 20 evaluation samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 20 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 10 tokens
    • mean: 24.05 tokens
    • max: 52 tokens
    • min: 7 tokens
    • mean: 13.2 tokens
    • max: 29 tokens
    • min: 0.0
    • mean: 0.35
    • max: 1.0
  • Samples:
    sentence1 sentence2 score
    A man with blond-hair, and a brown shirt drinking out of a public water fountain. A blond man wearing a brown shirt is reading a book on a bench in the park 0.0
    Two adults, one female in white, with shades and one male, gray clothes, walking across a street, away from a eatery with a blurred image of a dark colored red shirted person in the foreground. Two adults walking across a road near the convicted prisoner dressed in red 0.5
    A woman in a green jacket and hood over her head looking towards a valley. The woman is nake. 0.0
  • Loss: CoSENTLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "pairwise_cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • num_train_epochs: 1
  • warmup_ratio: 0.05
  • bf16: True
  • fp16_full_eval: True
  • load_best_model_at_end: True
  • push_to_hub: True
  • gradient_checkpointing: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 8
  • per_device_eval_batch_size: 8
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.05
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: True
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: True
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: True
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss Validation Loss pair-score-evaluator-dev_spearman_cosine
0.1 1 2.962 - -
0.5 5 3.1673 - -
1.0 10 2.813 2.6618 0.5948
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.11.12
  • Sentence Transformers: 4.1.0
  • Transformers: 4.52.3
  • PyTorch: 2.7.0+cu118
  • Accelerate: 1.6.0
  • Datasets: 3.6.0
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

CoSENTLoss

@online{kexuefm-8847,
    title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
    author={Su Jianlin},
    year={2022},
    month={Jan},
    url={https://kexue.fm/archives/8847},
}