bert-base-uncased-Federal-Regulations

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6193
  • Accuracy: 0.7332
  • Precision: 0.7510
  • Recall: 0.7332
  • F1: 0.7394
  • Roc Auc: 0.7821
  • Confusion Matrix: [[2590, 795], [498, 963]]

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Roc Auc Confusion Matrix
0.5846 1.0 600 0.6114 0.6620 0.7393 0.6620 0.6759 0.7668 [[2092, 1293], [345, 1116]]
0.5123 2.0 1200 0.5976 0.7210 0.7535 0.7210 0.7301 0.7848 [[2465, 920], [432, 1029]]
0.4449 3.0 1800 0.6193 0.7332 0.7510 0.7332 0.7394 0.7821 [[2590, 795], [498, 963]]

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.5.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
17
Safetensors
Model size
67M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for Salm00n/bert-base-uncased-Federal-Regulations

Finetuned
(7718)
this model