File size: 8,946 Bytes
3998add
b22979e
 
3998add
 
 
 
39f4015
d0c9024
3998add
 
39f4015
3998add
39f4015
3998add
39f4015
3998add
39f4015
3998add
39f4015
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35bbb6e
3998add
 
39f4015
 
 
3998add
 
39f4015
35bbb6e
 
39f4015
 
 
 
 
 
3998add
 
 
39f4015
 
 
 
 
 
 
3998add
 
39f4015
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3998add
39f4015
3998add
39f4015
3998add
39f4015
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
---
language:
- multilingual
tags:
- spec-vision
- vision-language-model
- transformers
license: mit
pipeline_tag: image-text-to-text
---

# Model Summary

Spec-Vision-V1 is a lightweight, state-of-the-art open multimodal model built on datasets that include synthetic data and filtered publicly available sources, with a focus on high-quality, reasoning-dense data in both text and vision. The model belongs to the SpecVision family and supports a 128K context length (in tokens). It has undergone a rigorous enhancement process, incorporating supervised fine-tuning and direct preference optimization to ensure precise instruction adherence and robust safety measures.

# πŸš€ Model Overview  

**Spec-Vision-V1** is built for **deep integration of visual and textual data**, enabling it to understand and process images in combination with natural language. The model has been trained on a diverse dataset containing images with associated captions, descriptions, and contextual information.  

### ✨ Key Features

- **πŸ–ΌοΈ Multimodal Processing**: Seamlessly combines image and text inputs.
- **⚑ Transformer-Based Architecture**: High efficiency in vision-language understanding.
- **πŸ“ Optimized for VQA & Captioning**: Excels in answering visual questions and generating descriptions.
- **πŸ“₯ Pre-trained Model**: Available for inference and fine-tuning.

---

## πŸ“Œ Installation

To use Spec-Vision-V1, install the required dependencies:

```bash
pip install transformers torch torchvision pillow
```

---

## πŸ”₯ Usage

### πŸ“₯ Load the Model

```python
from transformers import AutoModelForCausalLM, AutoProcessor
from PIL import Image
import torch

# Load the model and processor
model_name = "Spec-Vision-V1"
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True)
processor = AutoProcessor.from_pretrained(model_name, trust_remote_code=True)

# Load an example image
image = Image.open("example.jpg")

# Input text prompt
text = "Describe the image in detail."

# Process inputs
inputs = processor(images=image, text=text, return_tensors="pt")

# Generate output
with torch.no_grad():
    outputs = model(**inputs)

# Print the generated text
print(outputs)
```

---

## πŸ“Š Model Specifications

| Attribute        | Description                                  |
|-----------------|----------------------------------------------|
| **Model Name**  | Spec-Vision-V1                               |
| **Architecture** | Transformer-based Vision-Language Model    |
| **Pretrained**  | βœ… Yes                                      |
| **Dataset**     | Trained on diverse image-text pairs        |
| **Framework**   | PyTorch & Hugging Face Transformers        |

---

## 🎯 Applications

| Task                     | Description                                                   |
|--------------------------|--------------------------------------------------------------|
| **πŸ–ΌοΈ Image Captioning**    | Generates detailed descriptions for input images.         |
| **🧐 Visual Question Answering** | Answers questions about images.                  |
| **πŸ”Ž Image-Text Matching**  | Determines the relevance of an image to a given text.  |
| **🌍 Scene Understanding**  | Extracts insights from complex visual data.              |

---

## BLINK Benchmark

A benchmark with 14 visual tasks that humans can solve very quickly but are still hard for current multimodal LLMs.

| Benchmark                | Spec-Vision-V1 | LlaVA-Interleave-Qwen-7B | InternVL-2-4B | InternVL-2-8B | Gemini-1.5-Flash | GPT-4o-mini | Claude-3.5-Sonnet | Gemini-1.5-Pro | GPT-4o |
|--------------------------|--------------|--------------------------|---------------|---------------|------------------|-------------|-------------------|----------------|--------|
| Art Style               | 87.2         | 62.4                     | 55.6          | 52.1          | 64.1             | 70.1        | 59.8              | 70.9           | 73.3   |
| Counting                | 54.2         | 56.7                     | 54.2          | 66.7          | 51.7             | 55.0        | 59.2              | 65.0           | 65.0   |
| Forensic Detection      | 92.4         | 31.1                     | 40.9          | 34.1          | 54.5             | 38.6        | 67.4              | 60.6           | 75.8   |
| Functional Correspondence | 29.2       | 34.6                     | 24.6          | 24.6          | 33.1             | 26.9        | 33.8              | 31.5           | 43.8   |
| IQ Test                 | 25.3         | 26.7                     | 26.0          | 30.7          | 25.3             | 29.3        | 26.0              | 34.0           | 19.3   |
| Jigsaw                  | 68.0         | 86.0                     | 55.3          | 52.7          | 71.3             | 72.7        | 57.3              | 68.0           | 67.3   |
| Multi-View Reasoning    | 54.1         | 44.4                     | 48.9          | 42.9          | 48.9             | 48.1        | 55.6              | 49.6           | 46.6   |
| Object Localization     | 49.2         | 54.9                     | 53.3          | 54.1          | 44.3             | 57.4        | 62.3              | 65.6           | 68.0   |
| Relative Depth          | 69.4         | 77.4                     | 63.7          | 67.7          | 57.3             | 58.1        | 71.8              | 76.6           | 71.0   |
| Relative Reflectance    | 37.3         | 34.3                     | 32.8          | 38.8          | 32.8             | 27.6        | 36.6              | 38.8           | 40.3   |
| Semantic Correspondence | 36.7         | 31.7                     | 31.7          | 22.3          | 32.4             | 31.7        | 45.3              | 48.9           | 54.0   |
| Spatial Relation       | 65.7         | 75.5                     | 78.3          | 78.3          | 55.9             | 81.1        | 60.1              | 79.0           | 84.6   |
| Visual Correspondence  | 53.5         | 40.7                     | 34.9          | 33.1          | 29.7             | 52.9        | 72.1              | 81.4           | 86.0   |
| Visual Similarity      | 83.0         | 91.9                     | 48.1          | 45.2          | 47.4             | 77.8        | 84.4              | 81.5           | 88.1   |
| **Overall**            | **57.0**     | **53.1**                 | **45.9**      | **45.4**      | **45.8**         | **51.9**    | **56.5**          | **61.0**       | **63.2** |

---

## Video-MME Benchmark

A benchmark that comprehensively assesses the capabilities of multimodal LLMs in processing video data, covering a wide range of visual domains, temporal durations, and data modalities.

| Benchmark               | Spec-Vision-V1 | LlaVA-Interleave-Qwen-7B | InternVL-2-4B | InternVL-2-8B | Gemini-1.5-Flash | GPT-4o-mini | Claude-3.5-Sonnet | Gemini-1.5-Pro | GPT-4o |
|-------------------------|--------------|--------------------------|---------------|---------------|------------------|-------------|-------------------|----------------|--------|
| Short (<2min)          | 60.8         | 62.3                     | 60.7          | 61.7          | 72.2             | 70.1        | 66.3              | 73.3           | 77.7   |
| Medium (4-15min)       | 47.7         | 47.1                     | 46.4          | 49.6          | 62.7             | 59.6        | 54.7              | 61.2           | 68.0   |
| Long (30-60min)        | 43.8         | 41.2                     | 42.6          | 46.6          | 52.1             | 53.9        | 46.6              | 53.2           | 59.6   |
| **Overall**            | **50.8**     | **50.2**                 | **49.9**      | **52.6**      | **62.3**         | **61.2**    | **55.9**          | **62.6**       | **68.4** |


---

## πŸ—οΈ Model Training Details

| Parameter             | Value                          |
|----------------------|--------------------------------|
| **Batch Size**      | 16                             |
| **Optimizer**       | AdamW                          |
| **Learning Rate**   | 5e-5                           |
| **Training Steps**  | 100k                           |
| **Loss Function**   | CrossEntropyLoss               |
| **Framework**       | PyTorch & Transformers         |

---

## πŸ“œ License

**Spec-Vision-V1** is released under the **MIT**.

---

## πŸ“– Citation

If you use **Spec-Vision-V1** in your research or application, please cite:

```bibtex
@article{SpecVision2025,
  title={Spec-Vision-V1: A Vision-Language Transformer Model},
  author={SVECTOR},
  year={2025},
  journal={SVECTOR Research}
}
```

---

## πŸ“¬ Contact

For support or inquiries, reach out to **SVECTOR**:

- **🌐 Website**: [svector.co.in](https://www.svector.co.in)
- **πŸ“§ Email**: [[email protected]]([email protected])
- **✨ GitHub**: [SVECTOR GitHub](https://github.com/SVECTOR-CORPORATION)