Update README.md
Browse files
README.md
CHANGED
@@ -4,35 +4,168 @@ tags:
|
|
4 |
- spec-vision
|
5 |
- vision-language-model
|
6 |
- transformers
|
7 |
-
license:
|
8 |
---
|
9 |
|
10 |
-
#
|
11 |
|
12 |
-
|
13 |
|
14 |
-
|
15 |
|
16 |
-
|
17 |
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
```python
|
21 |
-
from transformers import
|
|
|
|
|
22 |
|
23 |
# Load the model and processor
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
# Process inputs
|
28 |
inputs = processor(images=image, text=text, return_tensors="pt")
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
```
|
31 |
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
-
|
35 |
|
36 |
-
|
37 |
|
38 |
-
|
|
|
|
|
|
4 |
- spec-vision
|
5 |
- vision-language-model
|
6 |
- transformers
|
7 |
+
license: mit
|
8 |
---
|
9 |
|
10 |
+
# Model Summary
|
11 |
|
12 |
+
Spec-Vision-V1 is a lightweight, state-of-the-art open multimodal model built on datasets that include synthetic data and filtered publicly available sources, with a focus on high-quality, reasoning-dense data in both text and vision. The model belongs to the SpecVision family and supports a 128K context length (in tokens). It has undergone a rigorous enhancement process, incorporating supervised fine-tuning and direct preference optimization to ensure precise instruction adherence and robust safety measures.
|
13 |
|
14 |
+
# π Model Overview
|
15 |
|
16 |
+
**Spec-Vision-V1** is built for **deep integration of visual and textual data**, enabling it to understand and process images in combination with natural language. The model has been trained on a diverse dataset containing images with associated captions, descriptions, and contextual information.
|
17 |
|
18 |
+
### β¨ Key Features
|
19 |
+
|
20 |
+
- **πΌοΈ Multimodal Processing**: Seamlessly combines image and text inputs.
|
21 |
+
- **β‘ Transformer-Based Architecture**: High efficiency in vision-language understanding.
|
22 |
+
- **π Optimized for VQA & Captioning**: Excels in answering visual questions and generating descriptions.
|
23 |
+
- **π₯ Pre-trained Model**: Available for inference and fine-tuning.
|
24 |
+
|
25 |
+
---
|
26 |
+
|
27 |
+
## π Installation
|
28 |
+
|
29 |
+
To use Spec-Vision-V1, install the required dependencies:
|
30 |
+
|
31 |
+
```bash
|
32 |
+
pip install transformers torch torchvision pillow
|
33 |
+
```
|
34 |
+
|
35 |
+
---
|
36 |
+
|
37 |
+
## π₯ Usage
|
38 |
+
|
39 |
+
### Load the Model
|
40 |
|
41 |
```python
|
42 |
+
from transformers import AutoModelForCausalLM, AutoProcessor
|
43 |
+
from PIL import Image
|
44 |
+
import torch
|
45 |
|
46 |
# Load the model and processor
|
47 |
+
model_name = "Spec-Vision-V1"
|
48 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
49 |
+
processor = AutoProcessor.from_pretrained(model_name)
|
50 |
+
|
51 |
+
# Load an example image
|
52 |
+
image = Image.open("example.jpg")
|
53 |
+
|
54 |
+
# Input text prompt
|
55 |
+
text = "Describe the image in detail."
|
56 |
|
57 |
# Process inputs
|
58 |
inputs = processor(images=image, text=text, return_tensors="pt")
|
59 |
+
|
60 |
+
# Generate output
|
61 |
+
with torch.no_grad():
|
62 |
+
outputs = model(**inputs)
|
63 |
+
|
64 |
+
# Print the generated text
|
65 |
+
print(outputs)
|
66 |
```
|
67 |
|
68 |
+
---
|
69 |
+
|
70 |
+
## π Model Specifications
|
71 |
+
|
72 |
+
| Attribute | Description |
|
73 |
+
|-----------------|----------------------------------------------|
|
74 |
+
| **Model Name** | Spec-Vision-V1 |
|
75 |
+
| **Architecture** | Transformer-based Vision-Language Model |
|
76 |
+
| **Pretrained** | β
Yes |
|
77 |
+
| **Dataset** | Trained on diverse image-text pairs |
|
78 |
+
| **Framework** | PyTorch & Hugging Face Transformers |
|
79 |
+
|
80 |
+
---
|
81 |
+
|
82 |
+
## π― Applications
|
83 |
+
|
84 |
+
| Task | Description |
|
85 |
+
|--------------------------|--------------------------------------------------------------|
|
86 |
+
| **πΌοΈ Image Captioning** | Generates detailed descriptions for input images. |
|
87 |
+
| **π§ Visual Question Answering** | Answers questions about images. |
|
88 |
+
| **π Image-Text Matching** | Determines the relevance of an image to a given text. |
|
89 |
+
| **π Scene Understanding** | Extracts insights from complex visual data. |
|
90 |
+
|
91 |
+
---
|
92 |
+
|
93 |
+
## BLINK Benchmark
|
94 |
+
|
95 |
+
A benchmark with 14 visual tasks that humans can solve very quickly but are still hard for current multimodal LLMs.
|
96 |
+
|
97 |
+
| Benchmark | Spec-Vision-V1 | LlaVA-Interleave-Qwen-7B | InternVL-2-4B | InternVL-2-8B | Gemini-1.5-Flash | GPT-4o-mini | Claude-3.5-Sonnet | Gemini-1.5-Pro | GPT-4o |
|
98 |
+
|--------------------------|--------------|--------------------------|---------------|---------------|------------------|-------------|-------------------|----------------|--------|
|
99 |
+
| Art Style | 87.2 | 62.4 | 55.6 | 52.1 | 64.1 | 70.1 | 59.8 | 70.9 | 73.3 |
|
100 |
+
| Counting | 54.2 | 56.7 | 54.2 | 66.7 | 51.7 | 55.0 | 59.2 | 65.0 | 65.0 |
|
101 |
+
| Forensic Detection | 92.4 | 31.1 | 40.9 | 34.1 | 54.5 | 38.6 | 67.4 | 60.6 | 75.8 |
|
102 |
+
| Functional Correspondence | 29.2 | 34.6 | 24.6 | 24.6 | 33.1 | 26.9 | 33.8 | 31.5 | 43.8 |
|
103 |
+
| IQ Test | 25.3 | 26.7 | 26.0 | 30.7 | 25.3 | 29.3 | 26.0 | 34.0 | 19.3 |
|
104 |
+
| Jigsaw | 68.0 | 86.0 | 55.3 | 52.7 | 71.3 | 72.7 | 57.3 | 68.0 | 67.3 |
|
105 |
+
| Multi-View Reasoning | 54.1 | 44.4 | 48.9 | 42.9 | 48.9 | 48.1 | 55.6 | 49.6 | 46.6 |
|
106 |
+
| Object Localization | 49.2 | 54.9 | 53.3 | 54.1 | 44.3 | 57.4 | 62.3 | 65.6 | 68.0 |
|
107 |
+
| Relative Depth | 69.4 | 77.4 | 63.7 | 67.7 | 57.3 | 58.1 | 71.8 | 76.6 | 71.0 |
|
108 |
+
| Relative Reflectance | 37.3 | 34.3 | 32.8 | 38.8 | 32.8 | 27.6 | 36.6 | 38.8 | 40.3 |
|
109 |
+
| Semantic Correspondence | 36.7 | 31.7 | 31.7 | 22.3 | 32.4 | 31.7 | 45.3 | 48.9 | 54.0 |
|
110 |
+
| Spatial Relation | 65.7 | 75.5 | 78.3 | 78.3 | 55.9 | 81.1 | 60.1 | 79.0 | 84.6 |
|
111 |
+
| Visual Correspondence | 53.5 | 40.7 | 34.9 | 33.1 | 29.7 | 52.9 | 72.1 | 81.4 | 86.0 |
|
112 |
+
| Visual Similarity | 83.0 | 91.9 | 48.1 | 45.2 | 47.4 | 77.8 | 84.4 | 81.5 | 88.1 |
|
113 |
+
| **Overall** | **57.0** | **53.1** | **45.9** | **45.4** | **45.8** | **51.9** | **56.5** | **61.0** | **63.2** |
|
114 |
+
|
115 |
+
---
|
116 |
+
|
117 |
+
## Video-MME Benchmark
|
118 |
+
|
119 |
+
A benchmark that comprehensively assesses the capabilities of multimodal LLMs in processing video data, covering a wide range of visual domains, temporal durations, and data modalities.
|
120 |
+
|
121 |
+
| Benchmark | Spec-Vision-V1 | LlaVA-Interleave-Qwen-7B | InternVL-2-4B | InternVL-2-8B | Gemini-1.5-Flash | GPT-4o-mini | Claude-3.5-Sonnet | Gemini-1.5-Pro | GPT-4o |
|
122 |
+
|-------------------------|--------------|--------------------------|---------------|---------------|------------------|-------------|-------------------|----------------|--------|
|
123 |
+
| Short (<2min) | 60.8 | 62.3 | 60.7 | 61.7 | 72.2 | 70.1 | 66.3 | 73.3 | 77.7 |
|
124 |
+
| Medium (4-15min) | 47.7 | 47.1 | 46.4 | 49.6 | 62.7 | 59.6 | 54.7 | 61.2 | 68.0 |
|
125 |
+
| Long (30-60min) | 43.8 | 41.2 | 42.6 | 46.6 | 52.1 | 53.9 | 46.6 | 53.2 | 59.6 |
|
126 |
+
| **Overall** | **50.8** | **50.2** | **49.9** | **52.6** | **62.3** | **61.2** | **55.9** | **62.6** | **68.4** |
|
127 |
+
|
128 |
+
|
129 |
+
---
|
130 |
+
|
131 |
+
## ποΈ Model Training Details
|
132 |
+
|
133 |
+
| Parameter | Value |
|
134 |
+
|----------------------|--------------------------------|
|
135 |
+
| **Batch Size** | 16 |
|
136 |
+
| **Optimizer** | AdamW |
|
137 |
+
| **Learning Rate** | 5e-5 |
|
138 |
+
| **Training Steps** | 100k |
|
139 |
+
| **Loss Function** | CrossEntropyLoss |
|
140 |
+
| **Framework** | PyTorch & Transformers |
|
141 |
+
|
142 |
+
---
|
143 |
+
|
144 |
+
## π License
|
145 |
+
|
146 |
+
**Spec-Vision-V1** is released under the **MIT**.
|
147 |
+
|
148 |
+
---
|
149 |
+
|
150 |
+
## π Citation
|
151 |
+
|
152 |
+
If you use **Spec-Vision-V1** in your research or application, please cite:
|
153 |
+
|
154 |
+
```bibtex
|
155 |
+
@article{SpecVision2025,
|
156 |
+
title={Spec-Vision-V1: A Vision-Language Transformer Model},
|
157 |
+
author={SVECTOR},
|
158 |
+
year={2025},
|
159 |
+
journal={SVECTOR Research}
|
160 |
+
}
|
161 |
+
```
|
162 |
+
|
163 |
+
---
|
164 |
|
165 |
+
## π¬ Contact
|
166 |
|
167 |
+
For support or inquiries, reach out to **SVECTOR**:
|
168 |
|
169 |
+
- **π Website**: [svector.co.in](https://www.svector.co.in)
|
170 |
+
- **π§ Email**: [[email protected]]([email protected])
|
171 |
+
- **β¨ GitHub**: [SVECTOR GitHub](https://github.com/SVECTOR-CORPORATION)
|