File size: 7,176 Bytes
b76ef48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

""" Spec-Vision model configuration"""

from typing import Dict, Optional, Union

from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging

logger = logging.get_logger(__name__)


class SpecVisionConfig(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`SpecVisionModel`]. It is used to instantiate a Spec-Vision
    model according to the specified arguments, defining the model architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        vocab_size (`int`, *optional*, defaults to 32064):
            Vocabulary size of the model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`SpecVisionModel`].
        hidden_size (`int`, *optional*, defaults to 3072):
            Dimension of the hidden representations.
        intermediate_size (`int`, *optional*, defaults to 8192):
            Dimension of the MLP representations.
        num_hidden_layers (`int`, *optional*, defaults to 32):
            Number of hidden layers in the Transformer decoder.
        num_attention_heads (`int`, *optional*, defaults to 32):
            Number of attention heads for each attention layer in the Transformer decoder.
        num_key_value_heads (`int`, *optional*):
            Number of key/value heads for implementing Grouped Query Attention.
        resid_pdrop (`float`, *optional*, defaults to 0.0):
            Dropout probability for MLP outputs.
        embd_pdrop (`float`, *optional*, defaults to 0.0):
            The dropout ratio for embeddings.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio after computing attention scores.
        hidden_act (`str`, *optional*, defaults to `"silu"`):
            The non-linear activation function in the decoder.
        max_position_embeddings (`int`, *optional*, defaults to 4096):
            The maximum sequence length that this model might ever be used with.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation for initializing all weight matrices.
        rms_norm_eps (`float`, *optional*, defaults to 1e-5):
            The epsilon value used for RMSNorm.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether to use the past key/values attentions for faster inference.
        rope_theta (`float`, *optional*, defaults to 10000.0):
            The base period of the RoPE embeddings.
        rope_scaling (`dict`, *optional*):
            Configuration for RoPE scaling strategy.
        embd_layer (`dict`, *optional*):
            Configuration for the embedding layer, including image embedding settings.
    """
    model_type = "spec_vision"
    keys_to_ignore_at_inference = ["past_key_values"]

    def __init__(
        self,
        vocab_size: int = 32064,
        hidden_size: int = 3072,
        intermediate_size: int = 8192,
        num_hidden_layers: int = 32,
        num_attention_heads: int = 32,
        num_key_value_heads: Optional[int] = None,
        resid_pdrop: float = 0.0,
        embd_pdrop: float = 0.0,
        attention_dropout: float = 0.0,
        hidden_act: str = "silu",
        max_position_embeddings: int = 4096,
        initializer_range: float = 0.02,
        rms_norm_eps: float = 1e-5,
        use_cache: bool = True,
        rope_theta: float = 10000.0,
        rope_scaling: Optional[Dict] = None,
        embd_layer: Dict[str, Union[str, bool]] = {
            "embedding_cls": "image",
            "hd_transform_order": "sub_glb",
            "projection_cls": "mlp",
            "use_hd_transform": True,
            "with_learnable_separator": True
        },
        bos_token_id: int = 1,
        eos_token_id: int = 32000,
        pad_token_id: int = 32000,
        tie_word_embeddings: bool = False,
        **kwargs,
    ):
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.intermediate_size = intermediate_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.num_key_value_heads = num_key_value_heads or num_attention_heads
        self.resid_pdrop = resid_pdrop
        self.embd_pdrop = embd_pdrop
        self.attention_dropout = attention_dropout
        self.hidden_act = hidden_act
        self.max_position_embeddings = max_position_embeddings
        self.initializer_range = initializer_range
        self.rms_norm_eps = rms_norm_eps
        self.use_cache = use_cache
        self.rope_theta = rope_theta
        self.rope_scaling = rope_scaling
        self.embd_layer = embd_layer

        super().__init__(
            bos_token_id=bos_token_id,
            eos_token_id=eos_token_id,
            pad_token_id=pad_token_id,
            tie_word_embeddings=tie_word_embeddings,
            **kwargs,
        )

    def _rope_scaling_validation(self):
        """
        Validate the `rope_scaling` configuration.
        """
        if self.rope_scaling is None:
            return

        if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 3:
            raise ValueError(
                "`rope_scaling` must be a dictionary with three fields, `type`, `short_factor` and `long_factor`, "
                f"got {self.rope_scaling}"
            )
        
        rope_scaling_type = self.rope_scaling.get("type", None)
        rope_scaling_short_factor = self.rope_scaling.get("short_factor", None)
        rope_scaling_long_factor = self.rope_scaling.get("long_factor", None)
        
        if rope_scaling_type is None or rope_scaling_type not in ["su", "yarn"]:
            raise ValueError(f"`rope_scaling`'s type field must be one of ['su', 'yarn'], got {rope_scaling_type}")
            
        head_dim = self.hidden_size // self.num_attention_heads // 2
        
        for factor, name in [(rope_scaling_short_factor, "short_factor"), (rope_scaling_long_factor, "long_factor")]:
            if not (isinstance(factor, list) and all(isinstance(x, (int, float)) for x in factor)):
                raise ValueError(f"`rope_scaling`'s {name} field must be a list of numbers, got {factor}")
            if len(factor) != head_dim:
                raise ValueError(f"`rope_scaling`'s {name} field must have length {head_dim}, got {len(factor)}")