Upload configuration_spec_vision.py with huggingface_hub
Browse files- configuration_spec_vision.py +157 -0
configuration_spec_vision.py
ADDED
@@ -0,0 +1,157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
""" Spec-Vision model configuration"""
|
17 |
+
|
18 |
+
from typing import Dict, Optional, Union
|
19 |
+
|
20 |
+
from transformers.configuration_utils import PretrainedConfig
|
21 |
+
from transformers.utils import logging
|
22 |
+
|
23 |
+
logger = logging.get_logger(__name__)
|
24 |
+
|
25 |
+
|
26 |
+
class SpecVisionConfig(PretrainedConfig):
|
27 |
+
r"""
|
28 |
+
This is the configuration class to store the configuration of a [`SpecVisionModel`]. It is used to instantiate a Spec-Vision
|
29 |
+
model according to the specified arguments, defining the model architecture.
|
30 |
+
|
31 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
32 |
+
documentation from [`PretrainedConfig`] for more information.
|
33 |
+
|
34 |
+
Args:
|
35 |
+
vocab_size (`int`, *optional*, defaults to 32064):
|
36 |
+
Vocabulary size of the model. Defines the number of different tokens that can be represented by the
|
37 |
+
`inputs_ids` passed when calling [`SpecVisionModel`].
|
38 |
+
hidden_size (`int`, *optional*, defaults to 3072):
|
39 |
+
Dimension of the hidden representations.
|
40 |
+
intermediate_size (`int`, *optional*, defaults to 8192):
|
41 |
+
Dimension of the MLP representations.
|
42 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
43 |
+
Number of hidden layers in the Transformer decoder.
|
44 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
45 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
46 |
+
num_key_value_heads (`int`, *optional*):
|
47 |
+
Number of key/value heads for implementing Grouped Query Attention.
|
48 |
+
resid_pdrop (`float`, *optional*, defaults to 0.0):
|
49 |
+
Dropout probability for MLP outputs.
|
50 |
+
embd_pdrop (`float`, *optional*, defaults to 0.0):
|
51 |
+
The dropout ratio for embeddings.
|
52 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
53 |
+
The dropout ratio after computing attention scores.
|
54 |
+
hidden_act (`str`, *optional*, defaults to `"silu"`):
|
55 |
+
The non-linear activation function in the decoder.
|
56 |
+
max_position_embeddings (`int`, *optional*, defaults to 4096):
|
57 |
+
The maximum sequence length that this model might ever be used with.
|
58 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
59 |
+
The standard deviation for initializing all weight matrices.
|
60 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-5):
|
61 |
+
The epsilon value used for RMSNorm.
|
62 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
63 |
+
Whether to use the past key/values attentions for faster inference.
|
64 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
65 |
+
The base period of the RoPE embeddings.
|
66 |
+
rope_scaling (`dict`, *optional*):
|
67 |
+
Configuration for RoPE scaling strategy.
|
68 |
+
embd_layer (`dict`, *optional*):
|
69 |
+
Configuration for the embedding layer, including image embedding settings.
|
70 |
+
"""
|
71 |
+
model_type = "spec_vision"
|
72 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
73 |
+
|
74 |
+
def __init__(
|
75 |
+
self,
|
76 |
+
vocab_size: int = 32064,
|
77 |
+
hidden_size: int = 3072,
|
78 |
+
intermediate_size: int = 8192,
|
79 |
+
num_hidden_layers: int = 32,
|
80 |
+
num_attention_heads: int = 32,
|
81 |
+
num_key_value_heads: Optional[int] = None,
|
82 |
+
resid_pdrop: float = 0.0,
|
83 |
+
embd_pdrop: float = 0.0,
|
84 |
+
attention_dropout: float = 0.0,
|
85 |
+
hidden_act: str = "silu",
|
86 |
+
max_position_embeddings: int = 4096,
|
87 |
+
initializer_range: float = 0.02,
|
88 |
+
rms_norm_eps: float = 1e-5,
|
89 |
+
use_cache: bool = True,
|
90 |
+
rope_theta: float = 10000.0,
|
91 |
+
rope_scaling: Optional[Dict] = None,
|
92 |
+
embd_layer: Dict[str, Union[str, bool]] = {
|
93 |
+
"embedding_cls": "image",
|
94 |
+
"hd_transform_order": "sub_glb",
|
95 |
+
"projection_cls": "mlp",
|
96 |
+
"use_hd_transform": True,
|
97 |
+
"with_learnable_separator": True
|
98 |
+
},
|
99 |
+
bos_token_id: int = 1,
|
100 |
+
eos_token_id: int = 32000,
|
101 |
+
pad_token_id: int = 32000,
|
102 |
+
tie_word_embeddings: bool = False,
|
103 |
+
**kwargs,
|
104 |
+
):
|
105 |
+
self.vocab_size = vocab_size
|
106 |
+
self.hidden_size = hidden_size
|
107 |
+
self.intermediate_size = intermediate_size
|
108 |
+
self.num_hidden_layers = num_hidden_layers
|
109 |
+
self.num_attention_heads = num_attention_heads
|
110 |
+
self.num_key_value_heads = num_key_value_heads or num_attention_heads
|
111 |
+
self.resid_pdrop = resid_pdrop
|
112 |
+
self.embd_pdrop = embd_pdrop
|
113 |
+
self.attention_dropout = attention_dropout
|
114 |
+
self.hidden_act = hidden_act
|
115 |
+
self.max_position_embeddings = max_position_embeddings
|
116 |
+
self.initializer_range = initializer_range
|
117 |
+
self.rms_norm_eps = rms_norm_eps
|
118 |
+
self.use_cache = use_cache
|
119 |
+
self.rope_theta = rope_theta
|
120 |
+
self.rope_scaling = rope_scaling
|
121 |
+
self.embd_layer = embd_layer
|
122 |
+
|
123 |
+
super().__init__(
|
124 |
+
bos_token_id=bos_token_id,
|
125 |
+
eos_token_id=eos_token_id,
|
126 |
+
pad_token_id=pad_token_id,
|
127 |
+
tie_word_embeddings=tie_word_embeddings,
|
128 |
+
**kwargs,
|
129 |
+
)
|
130 |
+
|
131 |
+
def _rope_scaling_validation(self):
|
132 |
+
"""
|
133 |
+
Validate the `rope_scaling` configuration.
|
134 |
+
"""
|
135 |
+
if self.rope_scaling is None:
|
136 |
+
return
|
137 |
+
|
138 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 3:
|
139 |
+
raise ValueError(
|
140 |
+
"`rope_scaling` must be a dictionary with three fields, `type`, `short_factor` and `long_factor`, "
|
141 |
+
f"got {self.rope_scaling}"
|
142 |
+
)
|
143 |
+
|
144 |
+
rope_scaling_type = self.rope_scaling.get("type", None)
|
145 |
+
rope_scaling_short_factor = self.rope_scaling.get("short_factor", None)
|
146 |
+
rope_scaling_long_factor = self.rope_scaling.get("long_factor", None)
|
147 |
+
|
148 |
+
if rope_scaling_type is None or rope_scaling_type not in ["su", "yarn"]:
|
149 |
+
raise ValueError(f"`rope_scaling`'s type field must be one of ['su', 'yarn'], got {rope_scaling_type}")
|
150 |
+
|
151 |
+
head_dim = self.hidden_size // self.num_attention_heads // 2
|
152 |
+
|
153 |
+
for factor, name in [(rope_scaling_short_factor, "short_factor"), (rope_scaling_long_factor, "long_factor")]:
|
154 |
+
if not (isinstance(factor, list) and all(isinstance(x, (int, float)) for x in factor)):
|
155 |
+
raise ValueError(f"`rope_scaling`'s {name} field must be a list of numbers, got {factor}")
|
156 |
+
if len(factor) != head_dim:
|
157 |
+
raise ValueError(f"`rope_scaling`'s {name} field must have length {head_dim}, got {len(factor)}")
|