File size: 13,532 Bytes
a643437 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 |
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Processor class for Spec-Vision.
"""
import re
from typing import List, Optional, Union
import numpy as np
import torch
import torchvision
from PIL import Image
from transformers import AutoImageProcessor
from transformers.feature_extraction_utils import BatchFeature
from transformers.image_processing_utils import BaseImageProcessor
from transformers.image_transforms import convert_to_rgb
from transformers.image_utils import (OPENAI_CLIP_MEAN, OPENAI_CLIP_STD,
ImageInput, make_list_of_images,
valid_images)
from transformers.processing_utils import ProcessorMixin
from transformers.tokenization_utils_base import (PaddingStrategy, TextInput,
TruncationStrategy)
from transformers.utils import TensorType, is_vision_available, logging
logger = logging.get_logger(__name__)
def padding_336(image):
"""Apply padding to make height a multiple of 336 while preserving aspect ratio."""
width, height = image.size
target_height = int(np.ceil(height / 336) * 336)
top_padding = int((target_height - height) / 2)
bottom_padding = target_height - height - top_padding
padded_image = torchvision.transforms.functional.pad(
image,
[0, top_padding, 0, bottom_padding],
fill=[255, 255, 255]
)
return padded_image
def calc_padded_size(width, height, padding_unit=336):
"""Calculate the padded dimensions for an image."""
target_height = int(np.ceil(height / padding_unit) * padding_unit)
padded_width = width
padded_height = target_height
return padded_width, padded_height
def hd_transform(img, hd_num=16):
"""Apply HD transformation with support for Spec-Vision's requirements."""
width, height = img.size
transposed = False
# Handle portrait images by transposing
if width < height:
img = img.transpose(Image.TRANSPOSE)
width, height = img.size
transposed = True
ratio = width / height
scale = 1
while scale * np.ceil(scale / ratio) <= hd_num:
scale += 1
scale -= 1
new_width = int(scale * 336)
new_height = int(new_width / ratio)
# Resize and pad
img = torchvision.transforms.functional.resize(img, [new_height, new_width])
img = padding_336(img)
# Restore original orientation if needed
if transposed:
img = img.transpose(Image.TRANSPOSE)
return img
def pad_to_max_crops(images, max_crops=5):
"""Pad batch of images to have consistent number of crops."""
B, _, H, W = images.shape
if B < max_crops:
padding = torch.zeros(max_crops - B, 3, H, W, dtype=images.dtype, device=images.device)
images = torch.cat([images, padding], dim=0)
return images
class SpecVisionImageProcessor(BaseImageProcessor):
"""
Image processor for Spec-Vision model.
This processor handles the preparation of images for the Spec-Vision model, including:
- HD transformation for high-resolution image processing
- Multi-crop processing with configurable number of crops
- Normalization and padding
"""
model_input_names = ["pixel_values"]
def __init__(
self,
num_crops: int = 1,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
do_convert_rgb: bool = True,
hd_transform_order: str = "sub_glb",
**kwargs,
) -> None:
super().__init__(**kwargs)
self.num_crops = num_crops
self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD
self.do_convert_rgb = do_convert_rgb
self.hd_transform_order = hd_transform_order
def calc_num_image_tokens(self, images: ImageInput) -> List[int]:
"""Calculate number of image tokens needed for each image."""
images = make_list_of_images(images)
if not valid_images(images):
raise ValueError("Invalid image type provided")
images = [image.convert('RGB') for image in images]
transformed_images = [hd_transform(im, hd_num=self.num_crops) for im in images]
shapes = [[im.size[1], im.size[0]] for im in transformed_images]
# Calculate tokens based on Spec-Vision's architecture
num_img_tokens = [
int((h//336 * w//336 + 1) * 144 + 1 + (h//336 + 1) * 12)
for h, w in shapes
]
return num_img_tokens
def preprocess(
self,
images: ImageInput,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
do_convert_rgb: bool = None,
return_tensors: Optional[Union[str, TensorType]] = None,
) -> BatchFeature:
"""
Preprocess images for the Spec-Vision model.
Handles HD transformation, normalization, and proper formatting of images
according to Spec-Vision's requirements.
"""
image_mean = image_mean if image_mean is not None else self.image_mean
image_std = image_std if image_std is not None else self.image_std
do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
# Validate and prepare images
images = make_list_of_images(images)
if not valid_images(images):
raise ValueError("Invalid image type provided")
if do_convert_rgb:
images = [convert_to_rgb(image) for image in images]
# Create image processor pipeline
img_processor = torchvision.transforms.Compose([
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize(image_mean, image_std)
])
# Process images according to Spec-Vision's HD transform requirements
images = [image.convert('RGB') for image in images]
transformed_images = [hd_transform(im, hd_num=self.num_crops) for im in images]
# Convert to tensors and normalize
hd_images = [img_processor(im) for im in transformed_images]
# Create global views
global_images = [
torch.nn.functional.interpolate(
im.unsqueeze(0).float(),
size=(336, 336),
mode='bicubic'
).to(im.dtype)
for im in hd_images
]
# Process shapes and calculate tokens
shapes = [[im.size(1), im.size(2)] for im in hd_images]
num_img_tokens = [
int(((h//336) * (w//336) + 1) * 144 + 1 + (h//336 + 1) * 12)
for h, w in shapes
]
# Reshape images according to Spec-Vision's requirements
hd_images_reshaped = [
im.reshape(1, 3, h//336, 336, w//336, 336)
.permute(0, 2, 4, 1, 3, 5)
.reshape(-1, 3, 336, 336)
.contiguous()
for im, (h, w) in zip(hd_images, shapes)
]
# Combine global and local views based on transform order
if self.hd_transform_order == "sub_glb":
processed_images = [
torch.cat([_im, _global_image], dim=0)
for _global_image, _im in zip(global_images, hd_images_reshaped)
]
else: # glb_sub
processed_images = [
torch.cat([_global_image, _im], dim=0)
for _global_image, _im in zip(global_images, hd_images_reshaped)
]
# Pad to consistent number of crops
image_batch = [
pad_to_max_crops(im, self.num_crops + 1)
for im in processed_images
]
image_batch = torch.stack(image_batch, dim=0)
return BatchFeature(
data={
"pixel_values": image_batch,
"image_sizes": shapes,
"num_img_tokens": num_img_tokens
},
tensor_type=return_tensors
)
class SpecVisionProcessor(ProcessorMixin):
"""
Combined processor for Spec-Vision model, handling both image and text inputs.
Combines SpecVisionImageProcessor for images and a tokenizer for text,
coordinating their interaction for multi-modal inputs.
"""
attributes = ["image_processor", "tokenizer"]
image_processor_class = "SpecVisionImageProcessor"
tokenizer_class = ("LlamaTokenizer", "LlamaTokenizerFast")
special_image_token = "<|image|>"
def __init__(self, image_processor, tokenizer):
self.image_processor = image_processor
self.tokenizer = tokenizer
self.num_img_tokens = image_processor.num_crops
self.img_tokens = [f"<|image_{i+1}|>" for i in range(1000000)]
def __call__(
self,
text: Union[TextInput, List[TextInput]],
images: ImageInput = None,
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str, TruncationStrategy] = None,
max_length=None,
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
) -> BatchFeature:
"""Process both text and image inputs for the model."""
if images is not None:
image_features = self.image_processor(images, return_tensors=return_tensors)
else:
image_features = {}
# Process combined inputs
inputs = self._process_multimodal_inputs(
image_features,
text,
padding=padding,
truncation=truncation,
max_length=max_length,
return_tensors=return_tensors
)
return inputs
def _process_multimodal_inputs(self, images, texts, **kwargs):
"""Process and combine image and text inputs."""
if not images:
return BatchFeature(data=self.tokenizer(
texts,
return_tensors=kwargs.get('return_tensors'),
padding=kwargs.get('padding'),
truncation=kwargs.get('truncation'),
max_length=kwargs.get('max_length')
))
# Process text chunks and image tags
pattern = r"<\|image_\d+\|>"
text_chunks = [
self.tokenizer(chunk).input_ids
for chunk in re.split(pattern, texts)
]
# Handle image tokens
num_img_tokens = (
images['num_img_tokens']
if 'num_img_tokens' in images
else [self.num_img_tokens] * len(images['pixel_values'])
)
image_tags = re.findall(pattern, texts)
image_ids = [int(tag.split("|")[1].split("_")[-1]) for tag in image_tags]
# Validate image IDs
unique_ids = sorted(set(image_ids))
if unique_ids != list(range(1, len(unique_ids) + 1)):
raise ValueError(
f"Image IDs must be consecutive integers starting from 1, got {unique_ids}"
)
if len(unique_ids) != len(images['pixel_values']):
raise ValueError(
f"Number of image tags ({len(unique_ids)}) doesn't match "
f"number of images ({len(images['pixel_values'])})"
)
# Create padded image IDs
image_ids_padded = [
[-iid] * num_img_tokens[iid-1]
for iid in image_ids
]
# Combine text and image tokens
input_ids = []
for x in self._interleave_sequences(text_chunks, image_ids_padded):
input_ids.extend(x)
input_ids = torch.tensor(input_ids, dtype=torch.long).unsqueeze(0)
attention_mask = (input_ids > -1000000).to(torch.long)
return BatchFeature(data={
"input_ids": input_ids,
"attention_mask": attention_mask,
"pixel_values": images['pixel_values'],
"image_sizes": images['image_sizes']
})
def _interleave_sequences(self, seq1, seq2):
"""Interleave two sequences, padding second sequence if needed."""
if len(seq1) > len(seq2):
seq2.append([])
return [item for pair in zip(seq1, seq2) for item in pair]
def batch_decode(self, *args, **kwargs):
"""Decode a batch of token IDs to text."""
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
"""Decode token IDs to text."""
return self.tokenizer.decode(*args, **kwargs)
@property
def model_input_names(self):
"""Get combined input names from both processors."""
return list(dict.fromkeys(
self.tokenizer.model_input_names +
self.image_processor.model_input_names
))
# Register the processor with AutoImageProcessor
AutoImageProcessor.register("SpecVisionImageProcessor", SpecVisionImageProcessor) |